Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697558339.4c6324b99746.1390.4 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3501a76a9976dec1d1c5cb3a3440195a14e11faa0c3be186871c288ee2fc53dc
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:59:49 0.0000 0.8401 0.1743 0.5858 0.5950 0.5904 0.4334
|
3 |
+
2 16:00:45 0.0000 0.1648 0.1194 0.7221 0.7131 0.7175 0.5798
|
4 |
+
3 16:01:41 0.0000 0.0860 0.1344 0.7225 0.7654 0.7434 0.6157
|
5 |
+
4 16:02:38 0.0000 0.0547 0.1577 0.7615 0.7514 0.7564 0.6293
|
6 |
+
5 16:03:34 0.0000 0.0336 0.1874 0.7521 0.7686 0.7602 0.6354
|
7 |
+
6 16:04:30 0.0000 0.0233 0.1992 0.8019 0.7756 0.7886 0.6671
|
8 |
+
7 16:05:25 0.0000 0.0151 0.1998 0.7792 0.8139 0.7962 0.6813
|
9 |
+
8 16:06:21 0.0000 0.0085 0.2182 0.7804 0.8030 0.7915 0.6726
|
10 |
+
9 16:07:15 0.0000 0.0049 0.2285 0.7911 0.8022 0.7966 0.6808
|
11 |
+
10 16:08:11 0.0000 0.0035 0.2287 0.7861 0.8045 0.7952 0.6774
|
runs/events.out.tfevents.1697558339.4c6324b99746.1390.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2b5b26aa70e9d464f26499d0dfd349e7dee4ef5cc872e65694a06f63eee3391
|
3 |
+
size 253592
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 15:58:59,059 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 15:58:59,061 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 15:58:59,061 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 15:58:59,062 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
49 |
+
2023-10-17 15:58:59,062 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 15:58:59,062 Train: 3575 sentences
|
51 |
+
2023-10-17 15:58:59,062 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 15:58:59,062 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 15:58:59,062 Training Params:
|
54 |
+
2023-10-17 15:58:59,062 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 15:58:59,062 - mini_batch_size: "8"
|
56 |
+
2023-10-17 15:58:59,062 - max_epochs: "10"
|
57 |
+
2023-10-17 15:58:59,062 - shuffle: "True"
|
58 |
+
2023-10-17 15:58:59,062 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 15:58:59,062 Plugins:
|
60 |
+
2023-10-17 15:58:59,063 - TensorboardLogger
|
61 |
+
2023-10-17 15:58:59,063 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 15:58:59,063 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 15:58:59,063 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 15:58:59,063 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 15:58:59,063 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 15:58:59,063 Computation:
|
67 |
+
2023-10-17 15:58:59,063 - compute on device: cuda:0
|
68 |
+
2023-10-17 15:58:59,063 - embedding storage: none
|
69 |
+
2023-10-17 15:58:59,063 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 15:58:59,063 Model training base path: "hmbench-hipe2020/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
71 |
+
2023-10-17 15:58:59,063 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 15:58:59,063 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 15:58:59,064 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 15:59:03,268 epoch 1 - iter 44/447 - loss 3.75328637 - time (sec): 4.20 - samples/sec: 2112.58 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 15:59:07,512 epoch 1 - iter 88/447 - loss 2.79174559 - time (sec): 8.45 - samples/sec: 2030.17 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 15:59:11,524 epoch 1 - iter 132/447 - loss 2.08551841 - time (sec): 12.46 - samples/sec: 1987.11 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 15:59:16,031 epoch 1 - iter 176/447 - loss 1.63894890 - time (sec): 16.97 - samples/sec: 2016.62 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 15:59:20,141 epoch 1 - iter 220/447 - loss 1.39670438 - time (sec): 21.08 - samples/sec: 2016.11 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 15:59:24,433 epoch 1 - iter 264/447 - loss 1.22305966 - time (sec): 25.37 - samples/sec: 2016.49 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 15:59:28,479 epoch 1 - iter 308/447 - loss 1.10231203 - time (sec): 29.41 - samples/sec: 2005.73 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 15:59:32,764 epoch 1 - iter 352/447 - loss 1.00085629 - time (sec): 33.70 - samples/sec: 2007.65 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 15:59:37,492 epoch 1 - iter 396/447 - loss 0.91299761 - time (sec): 38.43 - samples/sec: 2004.60 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 15:59:41,758 epoch 1 - iter 440/447 - loss 0.84847471 - time (sec): 42.69 - samples/sec: 2001.55 - lr: 0.000029 - momentum: 0.000000
|
84 |
+
2023-10-17 15:59:42,398 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 15:59:42,398 EPOCH 1 done: loss 0.8401 - lr: 0.000029
|
86 |
+
2023-10-17 15:59:49,299 DEV : loss 0.1743467152118683 - f1-score (micro avg) 0.5904
|
87 |
+
2023-10-17 15:59:49,362 saving best model
|
88 |
+
2023-10-17 15:59:50,000 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 15:59:54,169 epoch 2 - iter 44/447 - loss 0.20202135 - time (sec): 4.17 - samples/sec: 2020.85 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 15:59:58,785 epoch 2 - iter 88/447 - loss 0.19013888 - time (sec): 8.78 - samples/sec: 2021.47 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 16:00:03,225 epoch 2 - iter 132/447 - loss 0.19608616 - time (sec): 13.22 - samples/sec: 1930.61 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 16:00:08,005 epoch 2 - iter 176/447 - loss 0.18596049 - time (sec): 18.00 - samples/sec: 1937.03 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 16:00:12,138 epoch 2 - iter 220/447 - loss 0.18035707 - time (sec): 22.13 - samples/sec: 1977.69 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 16:00:16,236 epoch 2 - iter 264/447 - loss 0.17461322 - time (sec): 26.23 - samples/sec: 1965.57 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 16:00:20,493 epoch 2 - iter 308/447 - loss 0.16847653 - time (sec): 30.49 - samples/sec: 1986.10 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 16:00:24,739 epoch 2 - iter 352/447 - loss 0.16607108 - time (sec): 34.74 - samples/sec: 1993.31 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 16:00:28,945 epoch 2 - iter 396/447 - loss 0.16349240 - time (sec): 38.94 - samples/sec: 1988.06 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 16:00:33,205 epoch 2 - iter 440/447 - loss 0.16613347 - time (sec): 43.20 - samples/sec: 1976.45 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 16:00:33,854 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 16:00:33,855 EPOCH 2 done: loss 0.1648 - lr: 0.000027
|
101 |
+
2023-10-17 16:00:45,420 DEV : loss 0.11944183707237244 - f1-score (micro avg) 0.7175
|
102 |
+
2023-10-17 16:00:45,481 saving best model
|
103 |
+
2023-10-17 16:00:46,934 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 16:00:51,110 epoch 3 - iter 44/447 - loss 0.08131650 - time (sec): 4.17 - samples/sec: 1891.39 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 16:00:55,405 epoch 3 - iter 88/447 - loss 0.08702455 - time (sec): 8.47 - samples/sec: 1967.19 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 16:00:59,963 epoch 3 - iter 132/447 - loss 0.07972396 - time (sec): 13.02 - samples/sec: 1964.70 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 16:01:04,142 epoch 3 - iter 176/447 - loss 0.07975901 - time (sec): 17.20 - samples/sec: 1939.38 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 16:01:08,611 epoch 3 - iter 220/447 - loss 0.08247967 - time (sec): 21.67 - samples/sec: 1967.29 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 16:01:12,697 epoch 3 - iter 264/447 - loss 0.08537389 - time (sec): 25.76 - samples/sec: 1978.18 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 16:01:17,006 epoch 3 - iter 308/447 - loss 0.08411404 - time (sec): 30.07 - samples/sec: 1987.82 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 16:01:21,139 epoch 3 - iter 352/447 - loss 0.08280911 - time (sec): 34.20 - samples/sec: 1990.44 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 16:01:25,354 epoch 3 - iter 396/447 - loss 0.08456497 - time (sec): 38.42 - samples/sec: 1993.20 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 16:01:29,534 epoch 3 - iter 440/447 - loss 0.08638185 - time (sec): 42.60 - samples/sec: 1984.93 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 16:01:30,441 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 16:01:30,442 EPOCH 3 done: loss 0.0860 - lr: 0.000023
|
116 |
+
2023-10-17 16:01:41,799 DEV : loss 0.13438037037849426 - f1-score (micro avg) 0.7434
|
117 |
+
2023-10-17 16:01:41,855 saving best model
|
118 |
+
2023-10-17 16:01:43,314 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 16:01:47,660 epoch 4 - iter 44/447 - loss 0.05444230 - time (sec): 4.34 - samples/sec: 2164.26 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 16:01:52,647 epoch 4 - iter 88/447 - loss 0.05193996 - time (sec): 9.33 - samples/sec: 2018.23 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 16:01:57,154 epoch 4 - iter 132/447 - loss 0.05306498 - time (sec): 13.83 - samples/sec: 1941.12 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 16:02:01,286 epoch 4 - iter 176/447 - loss 0.05252827 - time (sec): 17.97 - samples/sec: 1934.72 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 16:02:05,472 epoch 4 - iter 220/447 - loss 0.05261466 - time (sec): 22.15 - samples/sec: 1950.76 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 16:02:09,829 epoch 4 - iter 264/447 - loss 0.05182422 - time (sec): 26.51 - samples/sec: 1953.80 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 16:02:13,882 epoch 4 - iter 308/447 - loss 0.05086636 - time (sec): 30.56 - samples/sec: 1955.14 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 16:02:18,196 epoch 4 - iter 352/447 - loss 0.05167051 - time (sec): 34.88 - samples/sec: 1968.66 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 16:02:22,250 epoch 4 - iter 396/447 - loss 0.05200802 - time (sec): 38.93 - samples/sec: 1971.49 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 16:02:26,437 epoch 4 - iter 440/447 - loss 0.05402605 - time (sec): 43.12 - samples/sec: 1980.43 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 16:02:27,080 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 16:02:27,080 EPOCH 4 done: loss 0.0547 - lr: 0.000020
|
131 |
+
2023-10-17 16:02:38,092 DEV : loss 0.15765978395938873 - f1-score (micro avg) 0.7564
|
132 |
+
2023-10-17 16:02:38,149 saving best model
|
133 |
+
2023-10-17 16:02:39,959 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 16:02:44,066 epoch 5 - iter 44/447 - loss 0.02163230 - time (sec): 4.10 - samples/sec: 2014.16 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 16:02:48,624 epoch 5 - iter 88/447 - loss 0.02328428 - time (sec): 8.66 - samples/sec: 2063.37 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 16:02:52,824 epoch 5 - iter 132/447 - loss 0.02815843 - time (sec): 12.86 - samples/sec: 2055.05 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 16:02:57,091 epoch 5 - iter 176/447 - loss 0.03162369 - time (sec): 17.13 - samples/sec: 2030.52 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 16:03:01,212 epoch 5 - iter 220/447 - loss 0.03390401 - time (sec): 21.25 - samples/sec: 2016.40 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 16:03:05,489 epoch 5 - iter 264/447 - loss 0.03510618 - time (sec): 25.53 - samples/sec: 1996.63 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 16:03:09,836 epoch 5 - iter 308/447 - loss 0.03570858 - time (sec): 29.87 - samples/sec: 2011.06 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 16:03:14,158 epoch 5 - iter 352/447 - loss 0.03496530 - time (sec): 34.19 - samples/sec: 2017.95 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 16:03:18,233 epoch 5 - iter 396/447 - loss 0.03442000 - time (sec): 38.27 - samples/sec: 2012.70 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 16:03:22,296 epoch 5 - iter 440/447 - loss 0.03343545 - time (sec): 42.33 - samples/sec: 2012.39 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 16:03:22,912 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 16:03:22,912 EPOCH 5 done: loss 0.0336 - lr: 0.000017
|
146 |
+
2023-10-17 16:03:34,146 DEV : loss 0.18739798665046692 - f1-score (micro avg) 0.7602
|
147 |
+
2023-10-17 16:03:34,211 saving best model
|
148 |
+
2023-10-17 16:03:35,654 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 16:03:40,239 epoch 6 - iter 44/447 - loss 0.02567182 - time (sec): 4.58 - samples/sec: 1915.30 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 16:03:44,559 epoch 6 - iter 88/447 - loss 0.02386413 - time (sec): 8.90 - samples/sec: 1963.68 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 16:03:48,830 epoch 6 - iter 132/447 - loss 0.02665298 - time (sec): 13.17 - samples/sec: 1938.11 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-17 16:03:52,872 epoch 6 - iter 176/447 - loss 0.02638426 - time (sec): 17.21 - samples/sec: 1966.56 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 16:03:56,972 epoch 6 - iter 220/447 - loss 0.02455531 - time (sec): 21.31 - samples/sec: 2002.06 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 16:04:01,089 epoch 6 - iter 264/447 - loss 0.02439035 - time (sec): 25.43 - samples/sec: 1989.32 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-17 16:04:05,048 epoch 6 - iter 308/447 - loss 0.02384438 - time (sec): 29.39 - samples/sec: 1990.74 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 16:04:09,461 epoch 6 - iter 352/447 - loss 0.02340501 - time (sec): 33.80 - samples/sec: 1998.99 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 16:04:13,567 epoch 6 - iter 396/447 - loss 0.02300984 - time (sec): 37.91 - samples/sec: 1999.25 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-17 16:04:18,493 epoch 6 - iter 440/447 - loss 0.02335350 - time (sec): 42.83 - samples/sec: 1992.49 - lr: 0.000013 - momentum: 0.000000
|
159 |
+
2023-10-17 16:04:19,112 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 16:04:19,113 EPOCH 6 done: loss 0.0233 - lr: 0.000013
|
161 |
+
2023-10-17 16:04:30,550 DEV : loss 0.1992470622062683 - f1-score (micro avg) 0.7886
|
162 |
+
2023-10-17 16:04:30,611 saving best model
|
163 |
+
2023-10-17 16:04:32,023 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-17 16:04:36,035 epoch 7 - iter 44/447 - loss 0.01165349 - time (sec): 4.01 - samples/sec: 2154.32 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-17 16:04:39,982 epoch 7 - iter 88/447 - loss 0.01076700 - time (sec): 7.95 - samples/sec: 2043.10 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-17 16:04:43,960 epoch 7 - iter 132/447 - loss 0.01479762 - time (sec): 11.93 - samples/sec: 2072.77 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 16:04:48,204 epoch 7 - iter 176/447 - loss 0.01368042 - time (sec): 16.18 - samples/sec: 2089.53 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-17 16:04:52,249 epoch 7 - iter 220/447 - loss 0.01535559 - time (sec): 20.22 - samples/sec: 2089.04 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-17 16:04:56,520 epoch 7 - iter 264/447 - loss 0.01497302 - time (sec): 24.49 - samples/sec: 2078.72 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 16:05:00,828 epoch 7 - iter 308/447 - loss 0.01480877 - time (sec): 28.80 - samples/sec: 2071.01 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-17 16:05:05,246 epoch 7 - iter 352/447 - loss 0.01534251 - time (sec): 33.22 - samples/sec: 2063.40 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-17 16:05:09,457 epoch 7 - iter 396/447 - loss 0.01577918 - time (sec): 37.43 - samples/sec: 2062.23 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-17 16:05:13,493 epoch 7 - iter 440/447 - loss 0.01506408 - time (sec): 41.47 - samples/sec: 2055.56 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-17 16:05:14,130 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 16:05:14,130 EPOCH 7 done: loss 0.0151 - lr: 0.000010
|
176 |
+
2023-10-17 16:05:25,738 DEV : loss 0.19981977343559265 - f1-score (micro avg) 0.7962
|
177 |
+
2023-10-17 16:05:25,795 saving best model
|
178 |
+
2023-10-17 16:05:27,205 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-17 16:05:31,392 epoch 8 - iter 44/447 - loss 0.00747848 - time (sec): 4.18 - samples/sec: 2091.78 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-17 16:05:35,357 epoch 8 - iter 88/447 - loss 0.00942650 - time (sec): 8.15 - samples/sec: 2073.55 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 16:05:39,452 epoch 8 - iter 132/447 - loss 0.01019952 - time (sec): 12.24 - samples/sec: 2051.86 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-17 16:05:43,674 epoch 8 - iter 176/447 - loss 0.01051999 - time (sec): 16.46 - samples/sec: 2018.14 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-17 16:05:48,447 epoch 8 - iter 220/447 - loss 0.00988506 - time (sec): 21.24 - samples/sec: 2029.40 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 16:05:52,743 epoch 8 - iter 264/447 - loss 0.00923766 - time (sec): 25.53 - samples/sec: 2028.90 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-17 16:05:56,918 epoch 8 - iter 308/447 - loss 0.00896950 - time (sec): 29.71 - samples/sec: 2045.61 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-17 16:06:01,147 epoch 8 - iter 352/447 - loss 0.00877691 - time (sec): 33.94 - samples/sec: 2033.23 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 16:06:05,239 epoch 8 - iter 396/447 - loss 0.00839354 - time (sec): 38.03 - samples/sec: 2027.39 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-17 16:06:09,389 epoch 8 - iter 440/447 - loss 0.00837721 - time (sec): 42.18 - samples/sec: 2020.17 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-17 16:06:10,039 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 16:06:10,039 EPOCH 8 done: loss 0.0085 - lr: 0.000007
|
191 |
+
2023-10-17 16:06:21,780 DEV : loss 0.21822908520698547 - f1-score (micro avg) 0.7915
|
192 |
+
2023-10-17 16:06:21,841 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-17 16:06:25,974 epoch 9 - iter 44/447 - loss 0.00971530 - time (sec): 4.13 - samples/sec: 2046.00 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 16:06:30,128 epoch 9 - iter 88/447 - loss 0.00589797 - time (sec): 8.28 - samples/sec: 2051.38 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-17 16:06:34,084 epoch 9 - iter 132/447 - loss 0.00489136 - time (sec): 12.24 - samples/sec: 2019.89 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-17 16:06:38,278 epoch 9 - iter 176/447 - loss 0.00468170 - time (sec): 16.43 - samples/sec: 2041.42 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 16:06:42,419 epoch 9 - iter 220/447 - loss 0.00474446 - time (sec): 20.58 - samples/sec: 2047.85 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-17 16:06:46,728 epoch 9 - iter 264/447 - loss 0.00529921 - time (sec): 24.88 - samples/sec: 2054.82 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-17 16:06:50,744 epoch 9 - iter 308/447 - loss 0.00534902 - time (sec): 28.90 - samples/sec: 2056.82 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 16:06:54,817 epoch 9 - iter 352/447 - loss 0.00532626 - time (sec): 32.97 - samples/sec: 2060.60 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-17 16:06:59,232 epoch 9 - iter 396/447 - loss 0.00517003 - time (sec): 37.39 - samples/sec: 2059.50 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-17 16:07:03,570 epoch 9 - iter 440/447 - loss 0.00496894 - time (sec): 41.73 - samples/sec: 2052.54 - lr: 0.000003 - momentum: 0.000000
|
203 |
+
2023-10-17 16:07:04,188 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 16:07:04,188 EPOCH 9 done: loss 0.0049 - lr: 0.000003
|
205 |
+
2023-10-17 16:07:15,489 DEV : loss 0.2285258173942566 - f1-score (micro avg) 0.7966
|
206 |
+
2023-10-17 16:07:15,545 saving best model
|
207 |
+
2023-10-17 16:07:16,964 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-17 16:07:21,376 epoch 10 - iter 44/447 - loss 0.00131630 - time (sec): 4.41 - samples/sec: 2067.92 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 16:07:25,410 epoch 10 - iter 88/447 - loss 0.00319788 - time (sec): 8.44 - samples/sec: 2035.90 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 16:07:29,655 epoch 10 - iter 132/447 - loss 0.00353846 - time (sec): 12.69 - samples/sec: 1978.90 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 16:07:34,051 epoch 10 - iter 176/447 - loss 0.00330267 - time (sec): 17.08 - samples/sec: 1977.05 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 16:07:38,665 epoch 10 - iter 220/447 - loss 0.00339446 - time (sec): 21.70 - samples/sec: 1945.15 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 16:07:43,234 epoch 10 - iter 264/447 - loss 0.00404962 - time (sec): 26.27 - samples/sec: 1971.40 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 16:07:47,304 epoch 10 - iter 308/447 - loss 0.00401999 - time (sec): 30.34 - samples/sec: 1956.79 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 16:07:51,685 epoch 10 - iter 352/447 - loss 0.00372843 - time (sec): 34.72 - samples/sec: 1959.83 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-17 16:07:55,746 epoch 10 - iter 396/447 - loss 0.00351848 - time (sec): 38.78 - samples/sec: 1963.55 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 16:07:59,987 epoch 10 - iter 440/447 - loss 0.00359443 - time (sec): 43.02 - samples/sec: 1975.68 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-17 16:08:00,668 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-17 16:08:00,669 EPOCH 10 done: loss 0.0035 - lr: 0.000000
|
220 |
+
2023-10-17 16:08:11,622 DEV : loss 0.22872760891914368 - f1-score (micro avg) 0.7952
|
221 |
+
2023-10-17 16:08:12,224 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-17 16:08:12,226 Loading model from best epoch ...
|
223 |
+
2023-10-17 16:08:14,951 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
224 |
+
2023-10-17 16:08:21,279
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.764
|
227 |
+
- F-score (macro) 0.6761
|
228 |
+
- Accuracy 0.6388
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8315 0.8775 0.8539 596
|
234 |
+
pers 0.7314 0.7688 0.7496 333
|
235 |
+
org 0.4892 0.5152 0.5018 132
|
236 |
+
prod 0.6154 0.4848 0.5424 66
|
237 |
+
time 0.7115 0.7551 0.7327 49
|
238 |
+
|
239 |
+
micro avg 0.7496 0.7789 0.7640 1176
|
240 |
+
macro avg 0.6758 0.6803 0.6761 1176
|
241 |
+
weighted avg 0.7476 0.7789 0.7623 1176
|
242 |
+
|
243 |
+
2023-10-17 16:08:21,280 ----------------------------------------------------------------------------------------------------
|