|
2023-10-17 22:40:09,832 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,833 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Train: 5901 sentences |
|
2023-10-17 22:40:09,834 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Training Params: |
|
2023-10-17 22:40:09,834 - learning_rate: "3e-05" |
|
2023-10-17 22:40:09,834 - mini_batch_size: "4" |
|
2023-10-17 22:40:09,834 - max_epochs: "10" |
|
2023-10-17 22:40:09,834 - shuffle: "True" |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Plugins: |
|
2023-10-17 22:40:09,834 - TensorboardLogger |
|
2023-10-17 22:40:09,834 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 22:40:09,834 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Computation: |
|
2023-10-17 22:40:09,834 - compute on device: cuda:0 |
|
2023-10-17 22:40:09,834 - embedding storage: none |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,834 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:40:09,835 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 22:40:17,519 epoch 1 - iter 147/1476 - loss 3.07750723 - time (sec): 7.68 - samples/sec: 2206.71 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 22:40:24,336 epoch 1 - iter 294/1476 - loss 1.95459894 - time (sec): 14.50 - samples/sec: 2196.26 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 22:40:31,314 epoch 1 - iter 441/1476 - loss 1.47363471 - time (sec): 21.48 - samples/sec: 2197.04 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 22:40:38,542 epoch 1 - iter 588/1476 - loss 1.18167349 - time (sec): 28.71 - samples/sec: 2238.56 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 22:40:46,134 epoch 1 - iter 735/1476 - loss 0.98564526 - time (sec): 36.30 - samples/sec: 2278.43 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 22:40:53,423 epoch 1 - iter 882/1476 - loss 0.86421617 - time (sec): 43.59 - samples/sec: 2289.40 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 22:41:00,627 epoch 1 - iter 1029/1476 - loss 0.77931638 - time (sec): 50.79 - samples/sec: 2268.73 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 22:41:07,707 epoch 1 - iter 1176/1476 - loss 0.70386191 - time (sec): 57.87 - samples/sec: 2277.93 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 22:41:15,069 epoch 1 - iter 1323/1476 - loss 0.64445259 - time (sec): 65.23 - samples/sec: 2276.79 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 22:41:22,297 epoch 1 - iter 1470/1476 - loss 0.59470038 - time (sec): 72.46 - samples/sec: 2291.42 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 22:41:22,569 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:41:22,570 EPOCH 1 done: loss 0.5940 - lr: 0.000030 |
|
2023-10-17 22:41:29,319 DEV : loss 0.16735684871673584 - f1-score (micro avg) 0.7058 |
|
2023-10-17 22:41:29,348 saving best model |
|
2023-10-17 22:41:29,779 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:41:37,266 epoch 2 - iter 147/1476 - loss 0.15072771 - time (sec): 7.49 - samples/sec: 2469.71 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 22:41:44,582 epoch 2 - iter 294/1476 - loss 0.14746518 - time (sec): 14.80 - samples/sec: 2331.23 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 22:41:51,851 epoch 2 - iter 441/1476 - loss 0.13894507 - time (sec): 22.07 - samples/sec: 2291.64 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 22:41:59,061 epoch 2 - iter 588/1476 - loss 0.13021866 - time (sec): 29.28 - samples/sec: 2291.07 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 22:42:05,987 epoch 2 - iter 735/1476 - loss 0.12984065 - time (sec): 36.21 - samples/sec: 2253.87 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 22:42:13,348 epoch 2 - iter 882/1476 - loss 0.12804986 - time (sec): 43.57 - samples/sec: 2245.49 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 22:42:20,395 epoch 2 - iter 1029/1476 - loss 0.12990719 - time (sec): 50.61 - samples/sec: 2238.85 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 22:42:27,576 epoch 2 - iter 1176/1476 - loss 0.12828340 - time (sec): 57.80 - samples/sec: 2238.14 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 22:42:35,053 epoch 2 - iter 1323/1476 - loss 0.12942787 - time (sec): 65.27 - samples/sec: 2237.59 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 22:42:42,936 epoch 2 - iter 1470/1476 - loss 0.12860067 - time (sec): 73.16 - samples/sec: 2244.43 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 22:42:43,494 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:42:43,495 EPOCH 2 done: loss 0.1275 - lr: 0.000027 |
|
2023-10-17 22:42:55,310 DEV : loss 0.12050662934780121 - f1-score (micro avg) 0.8191 |
|
2023-10-17 22:42:55,343 saving best model |
|
2023-10-17 22:42:55,872 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:43:03,355 epoch 3 - iter 147/1476 - loss 0.07089900 - time (sec): 7.48 - samples/sec: 2486.71 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 22:43:10,357 epoch 3 - iter 294/1476 - loss 0.07506524 - time (sec): 14.48 - samples/sec: 2406.72 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 22:43:17,277 epoch 3 - iter 441/1476 - loss 0.07835628 - time (sec): 21.40 - samples/sec: 2319.71 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 22:43:24,328 epoch 3 - iter 588/1476 - loss 0.07833308 - time (sec): 28.45 - samples/sec: 2315.22 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 22:43:31,759 epoch 3 - iter 735/1476 - loss 0.07691365 - time (sec): 35.88 - samples/sec: 2265.75 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 22:43:39,308 epoch 3 - iter 882/1476 - loss 0.07517658 - time (sec): 43.43 - samples/sec: 2271.90 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 22:43:46,575 epoch 3 - iter 1029/1476 - loss 0.07815255 - time (sec): 50.70 - samples/sec: 2295.81 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 22:43:53,550 epoch 3 - iter 1176/1476 - loss 0.07835946 - time (sec): 57.68 - samples/sec: 2282.20 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 22:44:00,946 epoch 3 - iter 1323/1476 - loss 0.07697543 - time (sec): 65.07 - samples/sec: 2273.40 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 22:44:08,761 epoch 3 - iter 1470/1476 - loss 0.07545738 - time (sec): 72.89 - samples/sec: 2274.74 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 22:44:09,031 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:44:09,031 EPOCH 3 done: loss 0.0753 - lr: 0.000023 |
|
2023-10-17 22:44:20,781 DEV : loss 0.15762658417224884 - f1-score (micro avg) 0.8294 |
|
2023-10-17 22:44:20,813 saving best model |
|
2023-10-17 22:44:21,236 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:44:28,279 epoch 4 - iter 147/1476 - loss 0.04836565 - time (sec): 7.04 - samples/sec: 2203.22 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 22:44:35,324 epoch 4 - iter 294/1476 - loss 0.04815048 - time (sec): 14.09 - samples/sec: 2226.41 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 22:44:42,611 epoch 4 - iter 441/1476 - loss 0.04592847 - time (sec): 21.37 - samples/sec: 2218.10 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 22:44:50,431 epoch 4 - iter 588/1476 - loss 0.04935296 - time (sec): 29.19 - samples/sec: 2290.53 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 22:44:57,584 epoch 4 - iter 735/1476 - loss 0.05072599 - time (sec): 36.35 - samples/sec: 2307.10 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 22:45:04,847 epoch 4 - iter 882/1476 - loss 0.05252931 - time (sec): 43.61 - samples/sec: 2269.02 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 22:45:11,951 epoch 4 - iter 1029/1476 - loss 0.05279802 - time (sec): 50.71 - samples/sec: 2271.93 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 22:45:19,180 epoch 4 - iter 1176/1476 - loss 0.05225997 - time (sec): 57.94 - samples/sec: 2263.76 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 22:45:26,359 epoch 4 - iter 1323/1476 - loss 0.05271834 - time (sec): 65.12 - samples/sec: 2260.40 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 22:45:34,049 epoch 4 - iter 1470/1476 - loss 0.05452585 - time (sec): 72.81 - samples/sec: 2278.00 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 22:45:34,354 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:45:34,354 EPOCH 4 done: loss 0.0544 - lr: 0.000020 |
|
2023-10-17 22:45:45,923 DEV : loss 0.1822829395532608 - f1-score (micro avg) 0.8332 |
|
2023-10-17 22:45:45,954 saving best model |
|
2023-10-17 22:45:46,477 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:45:53,531 epoch 5 - iter 147/1476 - loss 0.03087592 - time (sec): 7.05 - samples/sec: 2257.42 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 22:46:00,812 epoch 5 - iter 294/1476 - loss 0.03510467 - time (sec): 14.33 - samples/sec: 2199.75 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 22:46:08,156 epoch 5 - iter 441/1476 - loss 0.03365358 - time (sec): 21.67 - samples/sec: 2227.65 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 22:46:15,353 epoch 5 - iter 588/1476 - loss 0.03434837 - time (sec): 28.87 - samples/sec: 2274.67 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 22:46:22,756 epoch 5 - iter 735/1476 - loss 0.03685440 - time (sec): 36.27 - samples/sec: 2283.78 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 22:46:30,304 epoch 5 - iter 882/1476 - loss 0.03825794 - time (sec): 43.82 - samples/sec: 2271.52 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 22:46:37,448 epoch 5 - iter 1029/1476 - loss 0.03822057 - time (sec): 50.97 - samples/sec: 2265.37 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 22:46:45,497 epoch 5 - iter 1176/1476 - loss 0.03924243 - time (sec): 59.02 - samples/sec: 2293.68 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 22:46:52,518 epoch 5 - iter 1323/1476 - loss 0.03934298 - time (sec): 66.04 - samples/sec: 2280.42 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 22:46:59,295 epoch 5 - iter 1470/1476 - loss 0.03882360 - time (sec): 72.81 - samples/sec: 2278.67 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 22:46:59,561 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:46:59,561 EPOCH 5 done: loss 0.0388 - lr: 0.000017 |
|
2023-10-17 22:47:11,162 DEV : loss 0.18621014058589935 - f1-score (micro avg) 0.8379 |
|
2023-10-17 22:47:11,197 saving best model |
|
2023-10-17 22:47:11,723 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:47:18,892 epoch 6 - iter 147/1476 - loss 0.02770414 - time (sec): 7.17 - samples/sec: 2264.60 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 22:47:25,711 epoch 6 - iter 294/1476 - loss 0.02851307 - time (sec): 13.99 - samples/sec: 2323.19 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 22:47:33,069 epoch 6 - iter 441/1476 - loss 0.02486202 - time (sec): 21.34 - samples/sec: 2347.40 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 22:47:39,956 epoch 6 - iter 588/1476 - loss 0.02524968 - time (sec): 28.23 - samples/sec: 2325.82 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 22:47:47,038 epoch 6 - iter 735/1476 - loss 0.02636018 - time (sec): 35.31 - samples/sec: 2305.32 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 22:47:54,645 epoch 6 - iter 882/1476 - loss 0.02920486 - time (sec): 42.92 - samples/sec: 2311.97 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 22:48:01,797 epoch 6 - iter 1029/1476 - loss 0.02934640 - time (sec): 50.07 - samples/sec: 2289.23 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 22:48:09,059 epoch 6 - iter 1176/1476 - loss 0.02885883 - time (sec): 57.33 - samples/sec: 2292.72 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 22:48:16,703 epoch 6 - iter 1323/1476 - loss 0.02769546 - time (sec): 64.98 - samples/sec: 2304.69 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 22:48:23,801 epoch 6 - iter 1470/1476 - loss 0.02636714 - time (sec): 72.08 - samples/sec: 2300.74 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 22:48:24,067 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:48:24,067 EPOCH 6 done: loss 0.0263 - lr: 0.000013 |
|
2023-10-17 22:48:35,658 DEV : loss 0.20406724512577057 - f1-score (micro avg) 0.8511 |
|
2023-10-17 22:48:35,689 saving best model |
|
2023-10-17 22:48:36,271 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:48:43,803 epoch 7 - iter 147/1476 - loss 0.02205793 - time (sec): 7.53 - samples/sec: 2524.67 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 22:48:50,958 epoch 7 - iter 294/1476 - loss 0.02143969 - time (sec): 14.69 - samples/sec: 2419.88 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 22:48:57,854 epoch 7 - iter 441/1476 - loss 0.02028760 - time (sec): 21.58 - samples/sec: 2377.35 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 22:49:05,154 epoch 7 - iter 588/1476 - loss 0.01741992 - time (sec): 28.88 - samples/sec: 2373.16 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 22:49:11,967 epoch 7 - iter 735/1476 - loss 0.01641821 - time (sec): 35.69 - samples/sec: 2342.40 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 22:49:19,144 epoch 7 - iter 882/1476 - loss 0.01806466 - time (sec): 42.87 - samples/sec: 2332.93 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 22:49:26,261 epoch 7 - iter 1029/1476 - loss 0.01822509 - time (sec): 49.99 - samples/sec: 2333.26 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 22:49:33,408 epoch 7 - iter 1176/1476 - loss 0.01920481 - time (sec): 57.14 - samples/sec: 2326.48 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 22:49:40,792 epoch 7 - iter 1323/1476 - loss 0.01923333 - time (sec): 64.52 - samples/sec: 2314.70 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 22:49:47,921 epoch 7 - iter 1470/1476 - loss 0.01855287 - time (sec): 71.65 - samples/sec: 2312.81 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 22:49:48,208 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:49:48,208 EPOCH 7 done: loss 0.0185 - lr: 0.000010 |
|
2023-10-17 22:50:00,146 DEV : loss 0.2245376855134964 - f1-score (micro avg) 0.8306 |
|
2023-10-17 22:50:00,178 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:50:07,857 epoch 8 - iter 147/1476 - loss 0.01592872 - time (sec): 7.68 - samples/sec: 2498.55 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 22:50:15,185 epoch 8 - iter 294/1476 - loss 0.01652058 - time (sec): 15.01 - samples/sec: 2318.44 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 22:50:23,579 epoch 8 - iter 441/1476 - loss 0.01518762 - time (sec): 23.40 - samples/sec: 2257.87 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 22:50:31,110 epoch 8 - iter 588/1476 - loss 0.01343599 - time (sec): 30.93 - samples/sec: 2264.61 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 22:50:38,254 epoch 8 - iter 735/1476 - loss 0.01329444 - time (sec): 38.07 - samples/sec: 2262.48 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 22:50:45,519 epoch 8 - iter 882/1476 - loss 0.01390326 - time (sec): 45.34 - samples/sec: 2239.01 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 22:50:52,644 epoch 8 - iter 1029/1476 - loss 0.01339450 - time (sec): 52.46 - samples/sec: 2242.96 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 22:50:59,897 epoch 8 - iter 1176/1476 - loss 0.01415263 - time (sec): 59.72 - samples/sec: 2249.11 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 22:51:07,040 epoch 8 - iter 1323/1476 - loss 0.01348761 - time (sec): 66.86 - samples/sec: 2248.82 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 22:51:14,049 epoch 8 - iter 1470/1476 - loss 0.01308090 - time (sec): 73.87 - samples/sec: 2245.12 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 22:51:14,314 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:51:14,314 EPOCH 8 done: loss 0.0130 - lr: 0.000007 |
|
2023-10-17 22:51:25,969 DEV : loss 0.21830753982067108 - f1-score (micro avg) 0.8335 |
|
2023-10-17 22:51:26,000 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:51:33,103 epoch 9 - iter 147/1476 - loss 0.00986709 - time (sec): 7.10 - samples/sec: 2119.93 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 22:51:40,262 epoch 9 - iter 294/1476 - loss 0.00760639 - time (sec): 14.26 - samples/sec: 2184.15 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 22:51:48,382 epoch 9 - iter 441/1476 - loss 0.01190210 - time (sec): 22.38 - samples/sec: 2319.69 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 22:51:55,409 epoch 9 - iter 588/1476 - loss 0.01052885 - time (sec): 29.41 - samples/sec: 2261.66 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 22:52:02,664 epoch 9 - iter 735/1476 - loss 0.00969757 - time (sec): 36.66 - samples/sec: 2243.39 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 22:52:10,084 epoch 9 - iter 882/1476 - loss 0.00968684 - time (sec): 44.08 - samples/sec: 2280.73 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 22:52:17,065 epoch 9 - iter 1029/1476 - loss 0.00877958 - time (sec): 51.06 - samples/sec: 2263.45 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 22:52:24,448 epoch 9 - iter 1176/1476 - loss 0.01011816 - time (sec): 58.45 - samples/sec: 2271.94 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 22:52:31,842 epoch 9 - iter 1323/1476 - loss 0.00976704 - time (sec): 65.84 - samples/sec: 2272.64 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 22:52:38,763 epoch 9 - iter 1470/1476 - loss 0.00911628 - time (sec): 72.76 - samples/sec: 2275.80 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 22:52:39,069 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:52:39,069 EPOCH 9 done: loss 0.0091 - lr: 0.000003 |
|
2023-10-17 22:52:50,843 DEV : loss 0.22712911665439606 - f1-score (micro avg) 0.843 |
|
2023-10-17 22:52:50,874 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:52:58,014 epoch 10 - iter 147/1476 - loss 0.00057728 - time (sec): 7.14 - samples/sec: 2074.37 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 22:53:05,235 epoch 10 - iter 294/1476 - loss 0.00458539 - time (sec): 14.36 - samples/sec: 2150.42 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 22:53:12,340 epoch 10 - iter 441/1476 - loss 0.00372741 - time (sec): 21.47 - samples/sec: 2177.11 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 22:53:19,847 epoch 10 - iter 588/1476 - loss 0.00604047 - time (sec): 28.97 - samples/sec: 2274.98 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 22:53:26,849 epoch 10 - iter 735/1476 - loss 0.00618119 - time (sec): 35.97 - samples/sec: 2261.68 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 22:53:34,080 epoch 10 - iter 882/1476 - loss 0.00787261 - time (sec): 43.21 - samples/sec: 2280.58 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 22:53:41,061 epoch 10 - iter 1029/1476 - loss 0.00728488 - time (sec): 50.19 - samples/sec: 2282.92 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 22:53:48,202 epoch 10 - iter 1176/1476 - loss 0.00691182 - time (sec): 57.33 - samples/sec: 2283.09 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 22:53:55,920 epoch 10 - iter 1323/1476 - loss 0.00682906 - time (sec): 65.04 - samples/sec: 2298.88 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 22:54:03,480 epoch 10 - iter 1470/1476 - loss 0.00648025 - time (sec): 72.61 - samples/sec: 2278.46 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 22:54:03,815 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:54:03,815 EPOCH 10 done: loss 0.0064 - lr: 0.000000 |
|
2023-10-17 22:54:15,411 DEV : loss 0.2371174395084381 - f1-score (micro avg) 0.8457 |
|
2023-10-17 22:54:15,851 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 22:54:15,852 Loading model from best epoch ... |
|
2023-10-17 22:54:17,337 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-17 22:54:23,597 |
|
Results: |
|
- F-score (micro) 0.8158 |
|
- F-score (macro) 0.7248 |
|
- Accuracy 0.7083 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8456 0.8939 0.8691 858 |
|
pers 0.8044 0.8119 0.8082 537 |
|
org 0.6609 0.5758 0.6154 132 |
|
prod 0.7419 0.7541 0.7480 61 |
|
time 0.5303 0.6481 0.5833 54 |
|
|
|
micro avg 0.8038 0.8283 0.8158 1642 |
|
macro avg 0.7166 0.7368 0.7248 1642 |
|
weighted avg 0.8031 0.8283 0.8149 1642 |
|
|
|
2023-10-17 22:54:23,598 ---------------------------------------------------------------------------------------------------- |
|
|