Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697574037.bce904bcef33.2482.3 +3 -0
- test.tsv +0 -0
- training.log +241 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb25fd66035d55bf69acc7a8d1bb0ccc27e2642f05e11a7181cbc0707011152
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:21:56 0.0000 0.5008 0.1227 0.7281 0.7824 0.7543 0.6283
|
3 |
+
2 20:23:21 0.0000 0.1411 0.1605 0.6662 0.7417 0.7019 0.5700
|
4 |
+
3 20:24:46 0.0000 0.0932 0.1321 0.7669 0.8310 0.7977 0.6803
|
5 |
+
4 20:26:11 0.0000 0.0681 0.1755 0.8191 0.8351 0.8270 0.7319
|
6 |
+
5 20:27:37 0.0000 0.0476 0.2104 0.8457 0.8162 0.8307 0.7330
|
7 |
+
6 20:29:01 0.0000 0.0332 0.1892 0.8243 0.8328 0.8285 0.7259
|
8 |
+
7 20:30:29 0.0000 0.0222 0.2224 0.8411 0.8339 0.8375 0.7455
|
9 |
+
8 20:31:55 0.0000 0.0147 0.2161 0.8424 0.8356 0.8390 0.7494
|
10 |
+
9 20:33:28 0.0000 0.0081 0.2256 0.8393 0.8345 0.8369 0.7449
|
11 |
+
10 20:34:59 0.0000 0.0061 0.2356 0.8332 0.8356 0.8344 0.7406
|
runs/events.out.tfevents.1697574037.bce904bcef33.2482.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b5e8505b34f84debbab47d4233055398fb5c1f54d3de92af5f3ff85758ae75e
|
3 |
+
size 825716
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 20:20:37,487 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 20:20:37,488 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 20:20:37,488 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 20:20:37,488 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
49 |
+
2023-10-17 20:20:37,488 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 20:20:37,488 Train: 5901 sentences
|
51 |
+
2023-10-17 20:20:37,488 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 20:20:37,488 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 20:20:37,488 Training Params:
|
54 |
+
2023-10-17 20:20:37,488 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 20:20:37,489 - mini_batch_size: "4"
|
56 |
+
2023-10-17 20:20:37,489 - max_epochs: "10"
|
57 |
+
2023-10-17 20:20:37,489 - shuffle: "True"
|
58 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 20:20:37,489 Plugins:
|
60 |
+
2023-10-17 20:20:37,489 - TensorboardLogger
|
61 |
+
2023-10-17 20:20:37,489 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 20:20:37,489 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 20:20:37,489 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 20:20:37,489 Computation:
|
67 |
+
2023-10-17 20:20:37,489 - compute on device: cuda:0
|
68 |
+
2023-10-17 20:20:37,489 - embedding storage: none
|
69 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 20:20:37,489 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
71 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 20:20:37,489 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 20:20:37,489 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 20:20:45,045 epoch 1 - iter 147/1476 - loss 2.45075682 - time (sec): 7.55 - samples/sec: 2345.15 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 20:20:52,026 epoch 1 - iter 294/1476 - loss 1.54365509 - time (sec): 14.54 - samples/sec: 2280.56 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 20:20:59,562 epoch 1 - iter 441/1476 - loss 1.13854388 - time (sec): 22.07 - samples/sec: 2333.15 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 20:21:06,932 epoch 1 - iter 588/1476 - loss 0.91730690 - time (sec): 29.44 - samples/sec: 2358.65 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 20:21:14,098 epoch 1 - iter 735/1476 - loss 0.78832461 - time (sec): 36.61 - samples/sec: 2336.33 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 20:21:21,137 epoch 1 - iter 882/1476 - loss 0.70576861 - time (sec): 43.65 - samples/sec: 2298.06 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 20:21:28,234 epoch 1 - iter 1029/1476 - loss 0.64071654 - time (sec): 50.74 - samples/sec: 2286.04 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 20:21:35,283 epoch 1 - iter 1176/1476 - loss 0.58480153 - time (sec): 57.79 - samples/sec: 2286.47 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 20:21:42,496 epoch 1 - iter 1323/1476 - loss 0.54130591 - time (sec): 65.01 - samples/sec: 2285.85 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 20:21:49,635 epoch 1 - iter 1470/1476 - loss 0.50188471 - time (sec): 72.14 - samples/sec: 2299.29 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 20:21:49,886 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 20:21:49,886 EPOCH 1 done: loss 0.5008 - lr: 0.000050
|
86 |
+
2023-10-17 20:21:56,210 DEV : loss 0.12269438803195953 - f1-score (micro avg) 0.7543
|
87 |
+
2023-10-17 20:21:56,243 saving best model
|
88 |
+
2023-10-17 20:21:56,600 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 20:22:03,964 epoch 2 - iter 147/1476 - loss 0.15141280 - time (sec): 7.36 - samples/sec: 2270.51 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 20:22:11,323 epoch 2 - iter 294/1476 - loss 0.15112657 - time (sec): 14.72 - samples/sec: 2373.19 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 20:22:18,876 epoch 2 - iter 441/1476 - loss 0.14768430 - time (sec): 22.27 - samples/sec: 2351.50 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 20:22:25,980 epoch 2 - iter 588/1476 - loss 0.14500357 - time (sec): 29.38 - samples/sec: 2312.57 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 20:22:33,091 epoch 2 - iter 735/1476 - loss 0.14249498 - time (sec): 36.49 - samples/sec: 2254.48 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 20:22:40,077 epoch 2 - iter 882/1476 - loss 0.14525703 - time (sec): 43.48 - samples/sec: 2246.59 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 20:22:47,573 epoch 2 - iter 1029/1476 - loss 0.14238917 - time (sec): 50.97 - samples/sec: 2239.06 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 20:22:54,845 epoch 2 - iter 1176/1476 - loss 0.14182713 - time (sec): 58.24 - samples/sec: 2239.66 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 20:23:02,268 epoch 2 - iter 1323/1476 - loss 0.14190065 - time (sec): 65.67 - samples/sec: 2261.46 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 20:23:09,457 epoch 2 - iter 1470/1476 - loss 0.14112657 - time (sec): 72.86 - samples/sec: 2276.21 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 20:23:09,710 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 20:23:09,710 EPOCH 2 done: loss 0.1411 - lr: 0.000044
|
101 |
+
2023-10-17 20:23:21,174 DEV : loss 0.16049356758594513 - f1-score (micro avg) 0.7019
|
102 |
+
2023-10-17 20:23:21,207 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-17 20:23:28,726 epoch 3 - iter 147/1476 - loss 0.08022691 - time (sec): 7.52 - samples/sec: 2350.39 - lr: 0.000044 - momentum: 0.000000
|
104 |
+
2023-10-17 20:23:36,021 epoch 3 - iter 294/1476 - loss 0.08406285 - time (sec): 14.81 - samples/sec: 2373.14 - lr: 0.000043 - momentum: 0.000000
|
105 |
+
2023-10-17 20:23:43,025 epoch 3 - iter 441/1476 - loss 0.08796088 - time (sec): 21.82 - samples/sec: 2379.86 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 20:23:50,369 epoch 3 - iter 588/1476 - loss 0.09119106 - time (sec): 29.16 - samples/sec: 2330.63 - lr: 0.000042 - momentum: 0.000000
|
107 |
+
2023-10-17 20:23:57,561 epoch 3 - iter 735/1476 - loss 0.09523907 - time (sec): 36.35 - samples/sec: 2322.17 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 20:24:04,678 epoch 3 - iter 882/1476 - loss 0.09396738 - time (sec): 43.47 - samples/sec: 2293.44 - lr: 0.000041 - momentum: 0.000000
|
109 |
+
2023-10-17 20:24:12,835 epoch 3 - iter 1029/1476 - loss 0.09373264 - time (sec): 51.63 - samples/sec: 2278.70 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 20:24:20,129 epoch 3 - iter 1176/1476 - loss 0.09469625 - time (sec): 58.92 - samples/sec: 2270.69 - lr: 0.000040 - momentum: 0.000000
|
111 |
+
2023-10-17 20:24:27,320 epoch 3 - iter 1323/1476 - loss 0.09368396 - time (sec): 66.11 - samples/sec: 2267.77 - lr: 0.000039 - momentum: 0.000000
|
112 |
+
2023-10-17 20:24:34,665 epoch 3 - iter 1470/1476 - loss 0.09312445 - time (sec): 73.46 - samples/sec: 2259.50 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 20:24:34,937 ----------------------------------------------------------------------------------------------------
|
114 |
+
2023-10-17 20:24:34,938 EPOCH 3 done: loss 0.0932 - lr: 0.000039
|
115 |
+
2023-10-17 20:24:46,497 DEV : loss 0.13214744627475739 - f1-score (micro avg) 0.7977
|
116 |
+
2023-10-17 20:24:46,530 saving best model
|
117 |
+
2023-10-17 20:24:47,001 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-17 20:24:54,116 epoch 4 - iter 147/1476 - loss 0.07305392 - time (sec): 7.11 - samples/sec: 2239.81 - lr: 0.000038 - momentum: 0.000000
|
119 |
+
2023-10-17 20:25:01,367 epoch 4 - iter 294/1476 - loss 0.06289770 - time (sec): 14.36 - samples/sec: 2348.53 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 20:25:08,480 epoch 4 - iter 441/1476 - loss 0.06776105 - time (sec): 21.48 - samples/sec: 2284.26 - lr: 0.000037 - momentum: 0.000000
|
121 |
+
2023-10-17 20:25:16,121 epoch 4 - iter 588/1476 - loss 0.06873963 - time (sec): 29.12 - samples/sec: 2252.25 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 20:25:23,375 epoch 4 - iter 735/1476 - loss 0.07185754 - time (sec): 36.37 - samples/sec: 2207.32 - lr: 0.000036 - momentum: 0.000000
|
123 |
+
2023-10-17 20:25:30,807 epoch 4 - iter 882/1476 - loss 0.06900936 - time (sec): 43.80 - samples/sec: 2216.41 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 20:25:37,796 epoch 4 - iter 1029/1476 - loss 0.06636325 - time (sec): 50.79 - samples/sec: 2221.93 - lr: 0.000035 - momentum: 0.000000
|
125 |
+
2023-10-17 20:25:45,174 epoch 4 - iter 1176/1476 - loss 0.06586245 - time (sec): 58.17 - samples/sec: 2252.10 - lr: 0.000034 - momentum: 0.000000
|
126 |
+
2023-10-17 20:25:52,240 epoch 4 - iter 1323/1476 - loss 0.06697787 - time (sec): 65.24 - samples/sec: 2255.01 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 20:25:59,983 epoch 4 - iter 1470/1476 - loss 0.06808951 - time (sec): 72.98 - samples/sec: 2271.08 - lr: 0.000033 - momentum: 0.000000
|
128 |
+
2023-10-17 20:26:00,291 ----------------------------------------------------------------------------------------------------
|
129 |
+
2023-10-17 20:26:00,292 EPOCH 4 done: loss 0.0681 - lr: 0.000033
|
130 |
+
2023-10-17 20:26:11,758 DEV : loss 0.1754840463399887 - f1-score (micro avg) 0.827
|
131 |
+
2023-10-17 20:26:11,791 saving best model
|
132 |
+
2023-10-17 20:26:12,273 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-17 20:26:19,589 epoch 5 - iter 147/1476 - loss 0.04825016 - time (sec): 7.31 - samples/sec: 2436.31 - lr: 0.000033 - momentum: 0.000000
|
134 |
+
2023-10-17 20:26:26,872 epoch 5 - iter 294/1476 - loss 0.04930976 - time (sec): 14.59 - samples/sec: 2309.14 - lr: 0.000032 - momentum: 0.000000
|
135 |
+
2023-10-17 20:26:34,166 epoch 5 - iter 441/1476 - loss 0.04770019 - time (sec): 21.89 - samples/sec: 2307.01 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 20:26:41,138 epoch 5 - iter 588/1476 - loss 0.04688871 - time (sec): 28.86 - samples/sec: 2317.40 - lr: 0.000031 - momentum: 0.000000
|
137 |
+
2023-10-17 20:26:48,383 epoch 5 - iter 735/1476 - loss 0.04601401 - time (sec): 36.10 - samples/sec: 2323.11 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 20:26:55,592 epoch 5 - iter 882/1476 - loss 0.04384687 - time (sec): 43.31 - samples/sec: 2318.19 - lr: 0.000030 - momentum: 0.000000
|
139 |
+
2023-10-17 20:27:03,155 epoch 5 - iter 1029/1476 - loss 0.04285307 - time (sec): 50.87 - samples/sec: 2285.79 - lr: 0.000029 - momentum: 0.000000
|
140 |
+
2023-10-17 20:27:10,270 epoch 5 - iter 1176/1476 - loss 0.04658069 - time (sec): 57.99 - samples/sec: 2269.90 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 20:27:17,743 epoch 5 - iter 1323/1476 - loss 0.04712647 - time (sec): 65.46 - samples/sec: 2293.93 - lr: 0.000028 - momentum: 0.000000
|
142 |
+
2023-10-17 20:27:25,424 epoch 5 - iter 1470/1476 - loss 0.04713805 - time (sec): 73.14 - samples/sec: 2268.84 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 20:27:25,686 ----------------------------------------------------------------------------------------------------
|
144 |
+
2023-10-17 20:27:25,686 EPOCH 5 done: loss 0.0476 - lr: 0.000028
|
145 |
+
2023-10-17 20:27:37,323 DEV : loss 0.21042108535766602 - f1-score (micro avg) 0.8307
|
146 |
+
2023-10-17 20:27:37,354 saving best model
|
147 |
+
2023-10-17 20:27:37,817 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 20:27:44,810 epoch 6 - iter 147/1476 - loss 0.03453912 - time (sec): 6.99 - samples/sec: 2265.05 - lr: 0.000027 - momentum: 0.000000
|
149 |
+
2023-10-17 20:27:51,917 epoch 6 - iter 294/1476 - loss 0.03647166 - time (sec): 14.10 - samples/sec: 2343.34 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 20:27:58,988 epoch 6 - iter 441/1476 - loss 0.03049749 - time (sec): 21.17 - samples/sec: 2351.10 - lr: 0.000026 - momentum: 0.000000
|
151 |
+
2023-10-17 20:28:06,214 epoch 6 - iter 588/1476 - loss 0.03256111 - time (sec): 28.39 - samples/sec: 2317.20 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 20:28:13,245 epoch 6 - iter 735/1476 - loss 0.03378667 - time (sec): 35.42 - samples/sec: 2312.00 - lr: 0.000025 - momentum: 0.000000
|
153 |
+
2023-10-17 20:28:20,160 epoch 6 - iter 882/1476 - loss 0.03314087 - time (sec): 42.34 - samples/sec: 2304.81 - lr: 0.000024 - momentum: 0.000000
|
154 |
+
2023-10-17 20:28:27,651 epoch 6 - iter 1029/1476 - loss 0.03089634 - time (sec): 49.83 - samples/sec: 2307.34 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 20:28:34,770 epoch 6 - iter 1176/1476 - loss 0.03003096 - time (sec): 56.95 - samples/sec: 2309.76 - lr: 0.000023 - momentum: 0.000000
|
156 |
+
2023-10-17 20:28:41,901 epoch 6 - iter 1323/1476 - loss 0.03187601 - time (sec): 64.08 - samples/sec: 2305.63 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 20:28:49,320 epoch 6 - iter 1470/1476 - loss 0.03330083 - time (sec): 71.50 - samples/sec: 2319.18 - lr: 0.000022 - momentum: 0.000000
|
158 |
+
2023-10-17 20:28:49,614 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 20:28:49,614 EPOCH 6 done: loss 0.0332 - lr: 0.000022
|
160 |
+
2023-10-17 20:29:01,261 DEV : loss 0.18915601074695587 - f1-score (micro avg) 0.8285
|
161 |
+
2023-10-17 20:29:01,298 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-17 20:29:08,867 epoch 7 - iter 147/1476 - loss 0.01653898 - time (sec): 7.57 - samples/sec: 2231.80 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-17 20:29:17,104 epoch 7 - iter 294/1476 - loss 0.02599015 - time (sec): 15.80 - samples/sec: 2102.79 - lr: 0.000021 - momentum: 0.000000
|
164 |
+
2023-10-17 20:29:24,982 epoch 7 - iter 441/1476 - loss 0.02861579 - time (sec): 23.68 - samples/sec: 2159.44 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 20:29:32,237 epoch 7 - iter 588/1476 - loss 0.02528070 - time (sec): 30.94 - samples/sec: 2219.64 - lr: 0.000020 - momentum: 0.000000
|
166 |
+
2023-10-17 20:29:39,342 epoch 7 - iter 735/1476 - loss 0.02570093 - time (sec): 38.04 - samples/sec: 2218.06 - lr: 0.000019 - momentum: 0.000000
|
167 |
+
2023-10-17 20:29:46,643 epoch 7 - iter 882/1476 - loss 0.02442225 - time (sec): 45.34 - samples/sec: 2231.31 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-17 20:29:53,635 epoch 7 - iter 1029/1476 - loss 0.02453850 - time (sec): 52.34 - samples/sec: 2235.33 - lr: 0.000018 - momentum: 0.000000
|
169 |
+
2023-10-17 20:30:01,791 epoch 7 - iter 1176/1476 - loss 0.02386131 - time (sec): 60.49 - samples/sec: 2217.70 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 20:30:09,880 epoch 7 - iter 1323/1476 - loss 0.02311452 - time (sec): 68.58 - samples/sec: 2204.29 - lr: 0.000017 - momentum: 0.000000
|
171 |
+
2023-10-17 20:30:17,172 epoch 7 - iter 1470/1476 - loss 0.02213326 - time (sec): 75.87 - samples/sec: 2186.09 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 20:30:17,451 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-17 20:30:17,451 EPOCH 7 done: loss 0.0222 - lr: 0.000017
|
174 |
+
2023-10-17 20:30:29,432 DEV : loss 0.22237005829811096 - f1-score (micro avg) 0.8375
|
175 |
+
2023-10-17 20:30:29,467 saving best model
|
176 |
+
2023-10-17 20:30:29,942 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 20:30:37,188 epoch 8 - iter 147/1476 - loss 0.00842618 - time (sec): 7.24 - samples/sec: 2253.24 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 20:30:44,981 epoch 8 - iter 294/1476 - loss 0.00786122 - time (sec): 15.04 - samples/sec: 2269.72 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-17 20:30:52,418 epoch 8 - iter 441/1476 - loss 0.01083371 - time (sec): 22.47 - samples/sec: 2214.32 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-17 20:30:59,408 epoch 8 - iter 588/1476 - loss 0.01158928 - time (sec): 29.46 - samples/sec: 2230.67 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 20:31:06,510 epoch 8 - iter 735/1476 - loss 0.01381677 - time (sec): 36.57 - samples/sec: 2262.93 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-17 20:31:13,291 epoch 8 - iter 882/1476 - loss 0.01326944 - time (sec): 43.35 - samples/sec: 2266.51 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 20:31:21,217 epoch 8 - iter 1029/1476 - loss 0.01584565 - time (sec): 51.27 - samples/sec: 2295.28 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-17 20:31:28,174 epoch 8 - iter 1176/1476 - loss 0.01500981 - time (sec): 58.23 - samples/sec: 2292.30 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 20:31:35,385 epoch 8 - iter 1323/1476 - loss 0.01457328 - time (sec): 65.44 - samples/sec: 2296.33 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-17 20:31:42,554 epoch 8 - iter 1470/1476 - loss 0.01473348 - time (sec): 72.61 - samples/sec: 2278.84 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-17 20:31:42,937 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 20:31:42,937 EPOCH 8 done: loss 0.0147 - lr: 0.000011
|
189 |
+
2023-10-17 20:31:55,009 DEV : loss 0.2160811871290207 - f1-score (micro avg) 0.839
|
190 |
+
2023-10-17 20:31:55,060 saving best model
|
191 |
+
2023-10-17 20:31:55,642 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-17 20:32:04,050 epoch 9 - iter 147/1476 - loss 0.00655270 - time (sec): 8.41 - samples/sec: 2143.44 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-17 20:32:12,106 epoch 9 - iter 294/1476 - loss 0.00851486 - time (sec): 16.46 - samples/sec: 2211.15 - lr: 0.000010 - momentum: 0.000000
|
194 |
+
2023-10-17 20:32:20,382 epoch 9 - iter 441/1476 - loss 0.00841270 - time (sec): 24.74 - samples/sec: 2210.55 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-17 20:32:28,491 epoch 9 - iter 588/1476 - loss 0.00821208 - time (sec): 32.85 - samples/sec: 2128.04 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-17 20:32:36,654 epoch 9 - iter 735/1476 - loss 0.00783197 - time (sec): 41.01 - samples/sec: 2096.88 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 20:32:44,502 epoch 9 - iter 882/1476 - loss 0.00844606 - time (sec): 48.86 - samples/sec: 2093.27 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-17 20:32:52,126 epoch 9 - iter 1029/1476 - loss 0.00913720 - time (sec): 56.48 - samples/sec: 2077.93 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 20:32:59,984 epoch 9 - iter 1176/1476 - loss 0.00836341 - time (sec): 64.34 - samples/sec: 2065.61 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-17 20:33:08,375 epoch 9 - iter 1323/1476 - loss 0.00807285 - time (sec): 72.73 - samples/sec: 2079.22 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 20:33:15,939 epoch 9 - iter 1470/1476 - loss 0.00815447 - time (sec): 80.30 - samples/sec: 2063.52 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-17 20:33:16,264 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 20:33:16,264 EPOCH 9 done: loss 0.0081 - lr: 0.000006
|
204 |
+
2023-10-17 20:33:28,004 DEV : loss 0.22555013000965118 - f1-score (micro avg) 0.8369
|
205 |
+
2023-10-17 20:33:28,043 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-17 20:33:36,574 epoch 10 - iter 147/1476 - loss 0.00592010 - time (sec): 8.53 - samples/sec: 2314.54 - lr: 0.000005 - momentum: 0.000000
|
207 |
+
2023-10-17 20:33:45,359 epoch 10 - iter 294/1476 - loss 0.00415630 - time (sec): 17.31 - samples/sec: 2137.17 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-17 20:33:53,166 epoch 10 - iter 441/1476 - loss 0.00430526 - time (sec): 25.12 - samples/sec: 2120.30 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-17 20:34:00,904 epoch 10 - iter 588/1476 - loss 0.00403158 - time (sec): 32.86 - samples/sec: 2070.07 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 20:34:08,706 epoch 10 - iter 735/1476 - loss 0.00450434 - time (sec): 40.66 - samples/sec: 2059.10 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 20:34:16,327 epoch 10 - iter 882/1476 - loss 0.00429572 - time (sec): 48.28 - samples/sec: 2066.70 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 20:34:24,451 epoch 10 - iter 1029/1476 - loss 0.00479129 - time (sec): 56.41 - samples/sec: 2075.91 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 20:34:32,203 epoch 10 - iter 1176/1476 - loss 0.00542076 - time (sec): 64.16 - samples/sec: 2065.92 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 20:34:39,990 epoch 10 - iter 1323/1476 - loss 0.00558378 - time (sec): 71.95 - samples/sec: 2061.86 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 20:34:47,979 epoch 10 - iter 1470/1476 - loss 0.00606797 - time (sec): 79.93 - samples/sec: 2075.49 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 20:34:48,280 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 20:34:48,280 EPOCH 10 done: loss 0.0061 - lr: 0.000000
|
218 |
+
2023-10-17 20:34:59,857 DEV : loss 0.2355625480413437 - f1-score (micro avg) 0.8344
|
219 |
+
2023-10-17 20:35:00,410 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-17 20:35:00,411 Loading model from best epoch ...
|
221 |
+
2023-10-17 20:35:02,129 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
222 |
+
2023-10-17 20:35:08,299
|
223 |
+
Results:
|
224 |
+
- F-score (micro) 0.8028
|
225 |
+
- F-score (macro) 0.7089
|
226 |
+
- Accuracy 0.691
|
227 |
+
|
228 |
+
By class:
|
229 |
+
precision recall f1-score support
|
230 |
+
|
231 |
+
loc 0.8573 0.8683 0.8628 858
|
232 |
+
pers 0.7960 0.8063 0.8011 537
|
233 |
+
org 0.5260 0.6136 0.5664 132
|
234 |
+
prod 0.7167 0.7049 0.7107 61
|
235 |
+
time 0.5645 0.6481 0.6034 54
|
236 |
+
|
237 |
+
micro avg 0.7916 0.8143 0.8028 1642
|
238 |
+
macro avg 0.6921 0.7283 0.7089 1642
|
239 |
+
weighted avg 0.7958 0.8143 0.8046 1642
|
240 |
+
|
241 |
+
2023-10-17 20:35:08,299 ----------------------------------------------------------------------------------------------------
|