Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697581744.bce904bcef33.2482.13 +3 -0
- test.tsv +0 -0
- training.log +242 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43da13df8cfd06fcb195516cfee1555b67087f3eac5b2350ae10473ad789da1c
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:30:00 0.0000 0.5810 0.1130 0.7306 0.7892 0.7588 0.6397
|
3 |
+
2 22:31:04 0.0000 0.1202 0.1062 0.7871 0.7961 0.7916 0.6804
|
4 |
+
3 22:32:07 0.0000 0.0693 0.1311 0.8136 0.8351 0.8242 0.7218
|
5 |
+
4 22:33:11 0.0000 0.0499 0.1413 0.8100 0.8202 0.8150 0.7128
|
6 |
+
5 22:34:15 0.0000 0.0347 0.1900 0.8390 0.8236 0.8312 0.7329
|
7 |
+
6 22:35:19 0.0000 0.0236 0.2037 0.8220 0.8436 0.8327 0.7398
|
8 |
+
7 22:36:23 0.0000 0.0167 0.2062 0.8274 0.8345 0.8309 0.7370
|
9 |
+
8 22:37:25 0.0000 0.0116 0.2062 0.8339 0.8425 0.8382 0.7433
|
10 |
+
9 22:38:29 0.0000 0.0068 0.2081 0.8397 0.8551 0.8473 0.7590
|
11 |
+
10 22:39:32 0.0000 0.0047 0.2178 0.8383 0.8494 0.8438 0.7524
|
runs/events.out.tfevents.1697581744.bce904bcef33.2482.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677fa98a06045ecb137a4c8603e6e33edea23a21b1789243fc45fe48723ae015
|
3 |
+
size 415388
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 22:29:04,133 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 22:29:04,134 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 22:29:04,134 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 22:29:04,135 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
49 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 22:29:04,135 Train: 5901 sentences
|
51 |
+
2023-10-17 22:29:04,135 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 22:29:04,135 Training Params:
|
54 |
+
2023-10-17 22:29:04,135 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 22:29:04,135 - mini_batch_size: "8"
|
56 |
+
2023-10-17 22:29:04,135 - max_epochs: "10"
|
57 |
+
2023-10-17 22:29:04,135 - shuffle: "True"
|
58 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 22:29:04,135 Plugins:
|
60 |
+
2023-10-17 22:29:04,135 - TensorboardLogger
|
61 |
+
2023-10-17 22:29:04,135 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 22:29:04,135 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 22:29:04,135 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 22:29:04,135 Computation:
|
67 |
+
2023-10-17 22:29:04,135 - compute on device: cuda:0
|
68 |
+
2023-10-17 22:29:04,135 - embedding storage: none
|
69 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 22:29:04,135 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
71 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 22:29:04,135 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 22:29:04,135 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 22:29:09,478 epoch 1 - iter 73/738 - loss 2.99837415 - time (sec): 5.34 - samples/sec: 3166.80 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 22:29:13,992 epoch 1 - iter 146/738 - loss 1.93510546 - time (sec): 9.86 - samples/sec: 3213.05 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 22:29:18,605 epoch 1 - iter 219/738 - loss 1.45592106 - time (sec): 14.47 - samples/sec: 3237.90 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 22:29:23,729 epoch 1 - iter 292/738 - loss 1.16902073 - time (sec): 19.59 - samples/sec: 3260.44 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 22:29:29,137 epoch 1 - iter 365/738 - loss 0.97478204 - time (sec): 25.00 - samples/sec: 3288.96 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 22:29:34,394 epoch 1 - iter 438/738 - loss 0.85064874 - time (sec): 30.26 - samples/sec: 3282.58 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 22:29:38,954 epoch 1 - iter 511/738 - loss 0.76809817 - time (sec): 34.82 - samples/sec: 3284.37 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 22:29:43,774 epoch 1 - iter 584/738 - loss 0.69380777 - time (sec): 39.64 - samples/sec: 3297.78 - lr: 0.000039 - momentum: 0.000000
|
82 |
+
2023-10-17 22:29:48,885 epoch 1 - iter 657/738 - loss 0.63363005 - time (sec): 44.75 - samples/sec: 3296.16 - lr: 0.000044 - momentum: 0.000000
|
83 |
+
2023-10-17 22:29:53,841 epoch 1 - iter 730/738 - loss 0.58383020 - time (sec): 49.70 - samples/sec: 3320.47 - lr: 0.000049 - momentum: 0.000000
|
84 |
+
2023-10-17 22:29:54,280 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 22:29:54,280 EPOCH 1 done: loss 0.5810 - lr: 0.000049
|
86 |
+
2023-10-17 22:30:00,666 DEV : loss 0.11302945762872696 - f1-score (micro avg) 0.7588
|
87 |
+
2023-10-17 22:30:00,696 saving best model
|
88 |
+
2023-10-17 22:30:01,082 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 22:30:06,731 epoch 2 - iter 73/738 - loss 0.13556365 - time (sec): 5.65 - samples/sec: 3264.65 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 22:30:11,564 epoch 2 - iter 146/738 - loss 0.12924036 - time (sec): 10.48 - samples/sec: 3272.73 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 22:30:16,659 epoch 2 - iter 219/738 - loss 0.12904174 - time (sec): 15.58 - samples/sec: 3216.43 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 22:30:21,829 epoch 2 - iter 292/738 - loss 0.12726226 - time (sec): 20.75 - samples/sec: 3213.20 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 22:30:26,397 epoch 2 - iter 365/738 - loss 0.12773492 - time (sec): 25.31 - samples/sec: 3210.16 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 22:30:31,342 epoch 2 - iter 438/738 - loss 0.12584037 - time (sec): 30.26 - samples/sec: 3214.18 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 22:30:35,893 epoch 2 - iter 511/738 - loss 0.12575633 - time (sec): 34.81 - samples/sec: 3231.66 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 22:30:40,717 epoch 2 - iter 584/738 - loss 0.12360271 - time (sec): 39.63 - samples/sec: 3238.30 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 22:30:45,964 epoch 2 - iter 657/738 - loss 0.12251002 - time (sec): 44.88 - samples/sec: 3232.19 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 22:30:51,263 epoch 2 - iter 730/738 - loss 0.12156812 - time (sec): 50.18 - samples/sec: 3246.27 - lr: 0.000045 - momentum: 0.000000
|
99 |
+
2023-10-17 22:30:52,229 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 22:30:52,230 EPOCH 2 done: loss 0.1202 - lr: 0.000045
|
101 |
+
2023-10-17 22:31:04,398 DEV : loss 0.10620676726102829 - f1-score (micro avg) 0.7916
|
102 |
+
2023-10-17 22:31:04,432 saving best model
|
103 |
+
2023-10-17 22:31:04,975 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 22:31:10,816 epoch 3 - iter 73/738 - loss 0.07909692 - time (sec): 5.83 - samples/sec: 3171.41 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 22:31:15,736 epoch 3 - iter 146/738 - loss 0.07174765 - time (sec): 10.76 - samples/sec: 3220.31 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 22:31:20,225 epoch 3 - iter 219/738 - loss 0.07516061 - time (sec): 15.24 - samples/sec: 3229.49 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 22:31:25,006 epoch 3 - iter 292/738 - loss 0.07592855 - time (sec): 20.02 - samples/sec: 3258.50 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 22:31:29,791 epoch 3 - iter 365/738 - loss 0.07330696 - time (sec): 24.81 - samples/sec: 3265.19 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 22:31:35,103 epoch 3 - iter 438/738 - loss 0.07170697 - time (sec): 30.12 - samples/sec: 3259.41 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 22:31:40,196 epoch 3 - iter 511/738 - loss 0.07160535 - time (sec): 35.21 - samples/sec: 3281.25 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 22:31:44,916 epoch 3 - iter 584/738 - loss 0.07165988 - time (sec): 39.93 - samples/sec: 3271.92 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 22:31:50,041 epoch 3 - iter 657/738 - loss 0.07097376 - time (sec): 45.06 - samples/sec: 3262.94 - lr: 0.000040 - momentum: 0.000000
|
113 |
+
2023-10-17 22:31:55,409 epoch 3 - iter 730/738 - loss 0.06940338 - time (sec): 50.43 - samples/sec: 3262.11 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 22:31:55,939 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 22:31:55,939 EPOCH 3 done: loss 0.0693 - lr: 0.000039
|
116 |
+
2023-10-17 22:32:07,887 DEV : loss 0.13108941912651062 - f1-score (micro avg) 0.8242
|
117 |
+
2023-10-17 22:32:07,925 saving best model
|
118 |
+
2023-10-17 22:32:08,507 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 22:32:13,135 epoch 4 - iter 73/738 - loss 0.03703471 - time (sec): 4.63 - samples/sec: 3340.02 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 22:32:18,045 epoch 4 - iter 146/738 - loss 0.04150633 - time (sec): 9.54 - samples/sec: 3270.43 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 22:32:23,041 epoch 4 - iter 219/738 - loss 0.04123992 - time (sec): 14.53 - samples/sec: 3241.31 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 22:32:29,054 epoch 4 - iter 292/738 - loss 0.04410608 - time (sec): 20.54 - samples/sec: 3232.21 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 22:32:34,235 epoch 4 - iter 365/738 - loss 0.04659042 - time (sec): 25.73 - samples/sec: 3244.52 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 22:32:38,717 epoch 4 - iter 438/738 - loss 0.04619151 - time (sec): 30.21 - samples/sec: 3250.55 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 22:32:43,578 epoch 4 - iter 511/738 - loss 0.04635101 - time (sec): 35.07 - samples/sec: 3264.21 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 22:32:48,576 epoch 4 - iter 584/738 - loss 0.04536034 - time (sec): 40.07 - samples/sec: 3252.74 - lr: 0.000035 - momentum: 0.000000
|
127 |
+
2023-10-17 22:32:53,408 epoch 4 - iter 657/738 - loss 0.04699631 - time (sec): 44.90 - samples/sec: 3255.70 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 22:32:59,545 epoch 4 - iter 730/738 - loss 0.04985825 - time (sec): 51.04 - samples/sec: 3227.83 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 22:33:00,140 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 22:33:00,141 EPOCH 4 done: loss 0.0499 - lr: 0.000033
|
131 |
+
2023-10-17 22:33:11,846 DEV : loss 0.14125068485736847 - f1-score (micro avg) 0.815
|
132 |
+
2023-10-17 22:33:11,880 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-17 22:33:16,573 epoch 5 - iter 73/738 - loss 0.02879190 - time (sec): 4.69 - samples/sec: 3375.41 - lr: 0.000033 - momentum: 0.000000
|
134 |
+
2023-10-17 22:33:21,534 epoch 5 - iter 146/738 - loss 0.03371840 - time (sec): 9.65 - samples/sec: 3230.98 - lr: 0.000032 - momentum: 0.000000
|
135 |
+
2023-10-17 22:33:26,804 epoch 5 - iter 219/738 - loss 0.02945090 - time (sec): 14.92 - samples/sec: 3219.82 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 22:33:32,072 epoch 5 - iter 292/738 - loss 0.03027760 - time (sec): 20.19 - samples/sec: 3232.69 - lr: 0.000031 - momentum: 0.000000
|
137 |
+
2023-10-17 22:33:37,069 epoch 5 - iter 365/738 - loss 0.03506228 - time (sec): 25.19 - samples/sec: 3268.76 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 22:33:42,047 epoch 5 - iter 438/738 - loss 0.03543225 - time (sec): 30.17 - samples/sec: 3282.24 - lr: 0.000030 - momentum: 0.000000
|
139 |
+
2023-10-17 22:33:46,992 epoch 5 - iter 511/738 - loss 0.03479354 - time (sec): 35.11 - samples/sec: 3270.66 - lr: 0.000030 - momentum: 0.000000
|
140 |
+
2023-10-17 22:33:52,994 epoch 5 - iter 584/738 - loss 0.03639606 - time (sec): 41.11 - samples/sec: 3261.04 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 22:33:57,710 epoch 5 - iter 657/738 - loss 0.03555295 - time (sec): 45.83 - samples/sec: 3261.10 - lr: 0.000028 - momentum: 0.000000
|
142 |
+
2023-10-17 22:34:02,438 epoch 5 - iter 730/738 - loss 0.03486226 - time (sec): 50.56 - samples/sec: 3265.54 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 22:34:02,901 ----------------------------------------------------------------------------------------------------
|
144 |
+
2023-10-17 22:34:02,901 EPOCH 5 done: loss 0.0347 - lr: 0.000028
|
145 |
+
2023-10-17 22:34:15,042 DEV : loss 0.19004222750663757 - f1-score (micro avg) 0.8312
|
146 |
+
2023-10-17 22:34:15,088 saving best model
|
147 |
+
2023-10-17 22:34:15,573 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-17 22:34:20,441 epoch 6 - iter 73/738 - loss 0.02813745 - time (sec): 4.86 - samples/sec: 3296.59 - lr: 0.000027 - momentum: 0.000000
|
149 |
+
2023-10-17 22:34:25,602 epoch 6 - iter 146/738 - loss 0.02518261 - time (sec): 10.03 - samples/sec: 3225.85 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 22:34:31,064 epoch 6 - iter 219/738 - loss 0.02167308 - time (sec): 15.49 - samples/sec: 3216.28 - lr: 0.000026 - momentum: 0.000000
|
151 |
+
2023-10-17 22:34:35,610 epoch 6 - iter 292/738 - loss 0.02310727 - time (sec): 20.03 - samples/sec: 3242.49 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 22:34:40,377 epoch 6 - iter 365/738 - loss 0.02350712 - time (sec): 24.80 - samples/sec: 3262.02 - lr: 0.000025 - momentum: 0.000000
|
153 |
+
2023-10-17 22:34:45,894 epoch 6 - iter 438/738 - loss 0.02568561 - time (sec): 30.32 - samples/sec: 3251.89 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-17 22:34:50,637 epoch 6 - iter 511/738 - loss 0.02533559 - time (sec): 35.06 - samples/sec: 3248.03 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 22:34:55,852 epoch 6 - iter 584/738 - loss 0.02483365 - time (sec): 40.28 - samples/sec: 3242.98 - lr: 0.000023 - momentum: 0.000000
|
156 |
+
2023-10-17 22:35:01,847 epoch 6 - iter 657/738 - loss 0.02444670 - time (sec): 46.27 - samples/sec: 3218.62 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 22:35:06,861 epoch 6 - iter 730/738 - loss 0.02362799 - time (sec): 51.28 - samples/sec: 3215.12 - lr: 0.000022 - momentum: 0.000000
|
158 |
+
2023-10-17 22:35:07,312 ----------------------------------------------------------------------------------------------------
|
159 |
+
2023-10-17 22:35:07,313 EPOCH 6 done: loss 0.0236 - lr: 0.000022
|
160 |
+
2023-10-17 22:35:19,340 DEV : loss 0.20369166135787964 - f1-score (micro avg) 0.8327
|
161 |
+
2023-10-17 22:35:19,377 saving best model
|
162 |
+
2023-10-17 22:35:19,893 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-17 22:35:25,515 epoch 7 - iter 73/738 - loss 0.01350406 - time (sec): 5.62 - samples/sec: 3361.02 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-17 22:35:30,665 epoch 7 - iter 146/738 - loss 0.01445533 - time (sec): 10.77 - samples/sec: 3283.82 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 22:35:35,388 epoch 7 - iter 219/738 - loss 0.01349065 - time (sec): 15.49 - samples/sec: 3296.44 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-17 22:35:40,791 epoch 7 - iter 292/738 - loss 0.01184519 - time (sec): 20.90 - samples/sec: 3258.88 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-17 22:35:45,268 epoch 7 - iter 365/738 - loss 0.01302031 - time (sec): 25.37 - samples/sec: 3278.92 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-17 22:35:50,359 epoch 7 - iter 438/738 - loss 0.01425148 - time (sec): 30.46 - samples/sec: 3268.83 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-17 22:35:55,534 epoch 7 - iter 511/738 - loss 0.01540854 - time (sec): 35.64 - samples/sec: 3248.78 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 22:36:00,485 epoch 7 - iter 584/738 - loss 0.01593386 - time (sec): 40.59 - samples/sec: 3255.73 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-17 22:36:05,813 epoch 7 - iter 657/738 - loss 0.01714758 - time (sec): 45.92 - samples/sec: 3233.90 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 22:36:11,021 epoch 7 - iter 730/738 - loss 0.01677898 - time (sec): 51.13 - samples/sec: 3219.64 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-17 22:36:11,589 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 22:36:11,590 EPOCH 7 done: loss 0.0167 - lr: 0.000017
|
175 |
+
2023-10-17 22:36:23,302 DEV : loss 0.20619168877601624 - f1-score (micro avg) 0.8309
|
176 |
+
2023-10-17 22:36:23,335 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 22:36:28,762 epoch 8 - iter 73/738 - loss 0.01436214 - time (sec): 5.43 - samples/sec: 3505.01 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 22:36:33,706 epoch 8 - iter 146/738 - loss 0.01406720 - time (sec): 10.37 - samples/sec: 3337.79 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-17 22:36:39,250 epoch 8 - iter 219/738 - loss 0.01357334 - time (sec): 15.91 - samples/sec: 3295.54 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-17 22:36:44,612 epoch 8 - iter 292/738 - loss 0.01362606 - time (sec): 21.28 - samples/sec: 3277.39 - lr: 0.000015 - momentum: 0.000000
|
181 |
+
2023-10-17 22:36:49,362 epoch 8 - iter 365/738 - loss 0.01258376 - time (sec): 26.03 - samples/sec: 3288.03 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-17 22:36:54,351 epoch 8 - iter 438/738 - loss 0.01195634 - time (sec): 31.01 - samples/sec: 3256.51 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 22:36:59,301 epoch 8 - iter 511/738 - loss 0.01131119 - time (sec): 35.97 - samples/sec: 3247.35 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-17 22:37:04,249 epoch 8 - iter 584/738 - loss 0.01151810 - time (sec): 40.91 - samples/sec: 3262.34 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 22:37:09,202 epoch 8 - iter 657/738 - loss 0.01136472 - time (sec): 45.87 - samples/sec: 3258.75 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-17 22:37:13,756 epoch 8 - iter 730/738 - loss 0.01129012 - time (sec): 50.42 - samples/sec: 3264.76 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-17 22:37:14,310 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 22:37:14,310 EPOCH 8 done: loss 0.0116 - lr: 0.000011
|
189 |
+
2023-10-17 22:37:25,955 DEV : loss 0.20618367195129395 - f1-score (micro avg) 0.8382
|
190 |
+
2023-10-17 22:37:25,994 saving best model
|
191 |
+
2023-10-17 22:37:26,535 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-17 22:37:31,040 epoch 9 - iter 73/738 - loss 0.00179149 - time (sec): 4.50 - samples/sec: 3318.58 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-17 22:37:35,954 epoch 9 - iter 146/738 - loss 0.00388670 - time (sec): 9.42 - samples/sec: 3296.02 - lr: 0.000010 - momentum: 0.000000
|
194 |
+
2023-10-17 22:37:42,573 epoch 9 - iter 219/738 - loss 0.00558100 - time (sec): 16.04 - samples/sec: 3216.48 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-17 22:37:46,905 epoch 9 - iter 292/738 - loss 0.00579759 - time (sec): 20.37 - samples/sec: 3248.07 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-17 22:37:51,672 epoch 9 - iter 365/738 - loss 0.00592703 - time (sec): 25.14 - samples/sec: 3250.17 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 22:37:57,350 epoch 9 - iter 438/738 - loss 0.00668828 - time (sec): 30.81 - samples/sec: 3240.67 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-17 22:38:02,024 epoch 9 - iter 511/738 - loss 0.00651091 - time (sec): 35.49 - samples/sec: 3235.47 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 22:38:07,184 epoch 9 - iter 584/738 - loss 0.00667925 - time (sec): 40.65 - samples/sec: 3233.36 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-17 22:38:12,714 epoch 9 - iter 657/738 - loss 0.00716367 - time (sec): 46.18 - samples/sec: 3221.77 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 22:38:17,563 epoch 9 - iter 730/738 - loss 0.00684617 - time (sec): 51.03 - samples/sec: 3226.78 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-17 22:38:18,091 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 22:38:18,091 EPOCH 9 done: loss 0.0068 - lr: 0.000006
|
204 |
+
2023-10-17 22:38:29,523 DEV : loss 0.20809388160705566 - f1-score (micro avg) 0.8473
|
205 |
+
2023-10-17 22:38:29,554 saving best model
|
206 |
+
2023-10-17 22:38:30,106 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 22:38:34,557 epoch 10 - iter 73/738 - loss 0.00157154 - time (sec): 4.45 - samples/sec: 3307.08 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-17 22:38:39,511 epoch 10 - iter 146/738 - loss 0.00473884 - time (sec): 9.40 - samples/sec: 3262.89 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-17 22:38:44,413 epoch 10 - iter 219/738 - loss 0.00435182 - time (sec): 14.30 - samples/sec: 3245.94 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-17 22:38:50,176 epoch 10 - iter 292/738 - loss 0.00461898 - time (sec): 20.06 - samples/sec: 3265.73 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 22:38:54,905 epoch 10 - iter 365/738 - loss 0.00437464 - time (sec): 24.79 - samples/sec: 3267.62 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-17 22:39:00,079 epoch 10 - iter 438/738 - loss 0.00585767 - time (sec): 29.97 - samples/sec: 3265.78 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 22:39:04,813 epoch 10 - iter 511/738 - loss 0.00504414 - time (sec): 34.70 - samples/sec: 3278.60 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-17 22:39:09,643 epoch 10 - iter 584/738 - loss 0.00486786 - time (sec): 39.53 - samples/sec: 3281.88 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 22:39:15,461 epoch 10 - iter 657/738 - loss 0.00498413 - time (sec): 45.35 - samples/sec: 3278.45 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-17 22:39:20,217 epoch 10 - iter 730/738 - loss 0.00471586 - time (sec): 50.11 - samples/sec: 3274.82 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 22:39:20,859 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 22:39:20,859 EPOCH 10 done: loss 0.0047 - lr: 0.000000
|
219 |
+
2023-10-17 22:39:32,442 DEV : loss 0.21777039766311646 - f1-score (micro avg) 0.8438
|
220 |
+
2023-10-17 22:39:32,871 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-17 22:39:32,873 Loading model from best epoch ...
|
222 |
+
2023-10-17 22:39:34,269 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
223 |
+
2023-10-17 22:39:40,451
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.8122
|
226 |
+
- F-score (macro) 0.7141
|
227 |
+
- Accuracy 0.7007
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
loc 0.8672 0.8904 0.8787 858
|
233 |
+
pers 0.7737 0.8212 0.7967 537
|
234 |
+
org 0.5714 0.6364 0.6022 132
|
235 |
+
prod 0.6667 0.6885 0.6774 61
|
236 |
+
time 0.5714 0.6667 0.6154 54
|
237 |
+
|
238 |
+
micro avg 0.7929 0.8325 0.8122 1642
|
239 |
+
macro avg 0.6901 0.7406 0.7141 1642
|
240 |
+
weighted avg 0.7957 0.8325 0.8135 1642
|
241 |
+
|
242 |
+
2023-10-17 22:39:40,451 ----------------------------------------------------------------------------------------------------
|