2023-10-17 22:29:04,133 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,134 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): ElectraModel( (embeddings): ElectraEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ElectraEncoder( (layer): ModuleList( (0-11): 12 x ElectraLayer( (attention): ElectraAttention( (self): ElectraSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ElectraSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ElectraIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ElectraOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-17 22:29:04,134 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Train: 5901 sentences 2023-10-17 22:29:04,135 (train_with_dev=False, train_with_test=False) 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Training Params: 2023-10-17 22:29:04,135 - learning_rate: "5e-05" 2023-10-17 22:29:04,135 - mini_batch_size: "8" 2023-10-17 22:29:04,135 - max_epochs: "10" 2023-10-17 22:29:04,135 - shuffle: "True" 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Plugins: 2023-10-17 22:29:04,135 - TensorboardLogger 2023-10-17 22:29:04,135 - LinearScheduler | warmup_fraction: '0.1' 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Final evaluation on model from best epoch (best-model.pt) 2023-10-17 22:29:04,135 - metric: "('micro avg', 'f1-score')" 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Computation: 2023-10-17 22:29:04,135 - compute on device: cuda:0 2023-10-17 22:29:04,135 - embedding storage: none 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Model training base path: "hmbench-hipe2020/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:04,135 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-17 22:29:09,478 epoch 1 - iter 73/738 - loss 2.99837415 - time (sec): 5.34 - samples/sec: 3166.80 - lr: 0.000005 - momentum: 0.000000 2023-10-17 22:29:13,992 epoch 1 - iter 146/738 - loss 1.93510546 - time (sec): 9.86 - samples/sec: 3213.05 - lr: 0.000010 - momentum: 0.000000 2023-10-17 22:29:18,605 epoch 1 - iter 219/738 - loss 1.45592106 - time (sec): 14.47 - samples/sec: 3237.90 - lr: 0.000015 - momentum: 0.000000 2023-10-17 22:29:23,729 epoch 1 - iter 292/738 - loss 1.16902073 - time (sec): 19.59 - samples/sec: 3260.44 - lr: 0.000020 - momentum: 0.000000 2023-10-17 22:29:29,137 epoch 1 - iter 365/738 - loss 0.97478204 - time (sec): 25.00 - samples/sec: 3288.96 - lr: 0.000025 - momentum: 0.000000 2023-10-17 22:29:34,394 epoch 1 - iter 438/738 - loss 0.85064874 - time (sec): 30.26 - samples/sec: 3282.58 - lr: 0.000030 - momentum: 0.000000 2023-10-17 22:29:38,954 epoch 1 - iter 511/738 - loss 0.76809817 - time (sec): 34.82 - samples/sec: 3284.37 - lr: 0.000035 - momentum: 0.000000 2023-10-17 22:29:43,774 epoch 1 - iter 584/738 - loss 0.69380777 - time (sec): 39.64 - samples/sec: 3297.78 - lr: 0.000039 - momentum: 0.000000 2023-10-17 22:29:48,885 epoch 1 - iter 657/738 - loss 0.63363005 - time (sec): 44.75 - samples/sec: 3296.16 - lr: 0.000044 - momentum: 0.000000 2023-10-17 22:29:53,841 epoch 1 - iter 730/738 - loss 0.58383020 - time (sec): 49.70 - samples/sec: 3320.47 - lr: 0.000049 - momentum: 0.000000 2023-10-17 22:29:54,280 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:29:54,280 EPOCH 1 done: loss 0.5810 - lr: 0.000049 2023-10-17 22:30:00,666 DEV : loss 0.11302945762872696 - f1-score (micro avg) 0.7588 2023-10-17 22:30:00,696 saving best model 2023-10-17 22:30:01,082 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:30:06,731 epoch 2 - iter 73/738 - loss 0.13556365 - time (sec): 5.65 - samples/sec: 3264.65 - lr: 0.000049 - momentum: 0.000000 2023-10-17 22:30:11,564 epoch 2 - iter 146/738 - loss 0.12924036 - time (sec): 10.48 - samples/sec: 3272.73 - lr: 0.000049 - momentum: 0.000000 2023-10-17 22:30:16,659 epoch 2 - iter 219/738 - loss 0.12904174 - time (sec): 15.58 - samples/sec: 3216.43 - lr: 0.000048 - momentum: 0.000000 2023-10-17 22:30:21,829 epoch 2 - iter 292/738 - loss 0.12726226 - time (sec): 20.75 - samples/sec: 3213.20 - lr: 0.000048 - momentum: 0.000000 2023-10-17 22:30:26,397 epoch 2 - iter 365/738 - loss 0.12773492 - time (sec): 25.31 - samples/sec: 3210.16 - lr: 0.000047 - momentum: 0.000000 2023-10-17 22:30:31,342 epoch 2 - iter 438/738 - loss 0.12584037 - time (sec): 30.26 - samples/sec: 3214.18 - lr: 0.000047 - momentum: 0.000000 2023-10-17 22:30:35,893 epoch 2 - iter 511/738 - loss 0.12575633 - time (sec): 34.81 - samples/sec: 3231.66 - lr: 0.000046 - momentum: 0.000000 2023-10-17 22:30:40,717 epoch 2 - iter 584/738 - loss 0.12360271 - time (sec): 39.63 - samples/sec: 3238.30 - lr: 0.000046 - momentum: 0.000000 2023-10-17 22:30:45,964 epoch 2 - iter 657/738 - loss 0.12251002 - time (sec): 44.88 - samples/sec: 3232.19 - lr: 0.000045 - momentum: 0.000000 2023-10-17 22:30:51,263 epoch 2 - iter 730/738 - loss 0.12156812 - time (sec): 50.18 - samples/sec: 3246.27 - lr: 0.000045 - momentum: 0.000000 2023-10-17 22:30:52,229 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:30:52,230 EPOCH 2 done: loss 0.1202 - lr: 0.000045 2023-10-17 22:31:04,398 DEV : loss 0.10620676726102829 - f1-score (micro avg) 0.7916 2023-10-17 22:31:04,432 saving best model 2023-10-17 22:31:04,975 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:31:10,816 epoch 3 - iter 73/738 - loss 0.07909692 - time (sec): 5.83 - samples/sec: 3171.41 - lr: 0.000044 - momentum: 0.000000 2023-10-17 22:31:15,736 epoch 3 - iter 146/738 - loss 0.07174765 - time (sec): 10.76 - samples/sec: 3220.31 - lr: 0.000043 - momentum: 0.000000 2023-10-17 22:31:20,225 epoch 3 - iter 219/738 - loss 0.07516061 - time (sec): 15.24 - samples/sec: 3229.49 - lr: 0.000043 - momentum: 0.000000 2023-10-17 22:31:25,006 epoch 3 - iter 292/738 - loss 0.07592855 - time (sec): 20.02 - samples/sec: 3258.50 - lr: 0.000042 - momentum: 0.000000 2023-10-17 22:31:29,791 epoch 3 - iter 365/738 - loss 0.07330696 - time (sec): 24.81 - samples/sec: 3265.19 - lr: 0.000042 - momentum: 0.000000 2023-10-17 22:31:35,103 epoch 3 - iter 438/738 - loss 0.07170697 - time (sec): 30.12 - samples/sec: 3259.41 - lr: 0.000041 - momentum: 0.000000 2023-10-17 22:31:40,196 epoch 3 - iter 511/738 - loss 0.07160535 - time (sec): 35.21 - samples/sec: 3281.25 - lr: 0.000041 - momentum: 0.000000 2023-10-17 22:31:44,916 epoch 3 - iter 584/738 - loss 0.07165988 - time (sec): 39.93 - samples/sec: 3271.92 - lr: 0.000040 - momentum: 0.000000 2023-10-17 22:31:50,041 epoch 3 - iter 657/738 - loss 0.07097376 - time (sec): 45.06 - samples/sec: 3262.94 - lr: 0.000040 - momentum: 0.000000 2023-10-17 22:31:55,409 epoch 3 - iter 730/738 - loss 0.06940338 - time (sec): 50.43 - samples/sec: 3262.11 - lr: 0.000039 - momentum: 0.000000 2023-10-17 22:31:55,939 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:31:55,939 EPOCH 3 done: loss 0.0693 - lr: 0.000039 2023-10-17 22:32:07,887 DEV : loss 0.13108941912651062 - f1-score (micro avg) 0.8242 2023-10-17 22:32:07,925 saving best model 2023-10-17 22:32:08,507 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:32:13,135 epoch 4 - iter 73/738 - loss 0.03703471 - time (sec): 4.63 - samples/sec: 3340.02 - lr: 0.000038 - momentum: 0.000000 2023-10-17 22:32:18,045 epoch 4 - iter 146/738 - loss 0.04150633 - time (sec): 9.54 - samples/sec: 3270.43 - lr: 0.000038 - momentum: 0.000000 2023-10-17 22:32:23,041 epoch 4 - iter 219/738 - loss 0.04123992 - time (sec): 14.53 - samples/sec: 3241.31 - lr: 0.000037 - momentum: 0.000000 2023-10-17 22:32:29,054 epoch 4 - iter 292/738 - loss 0.04410608 - time (sec): 20.54 - samples/sec: 3232.21 - lr: 0.000037 - momentum: 0.000000 2023-10-17 22:32:34,235 epoch 4 - iter 365/738 - loss 0.04659042 - time (sec): 25.73 - samples/sec: 3244.52 - lr: 0.000036 - momentum: 0.000000 2023-10-17 22:32:38,717 epoch 4 - iter 438/738 - loss 0.04619151 - time (sec): 30.21 - samples/sec: 3250.55 - lr: 0.000036 - momentum: 0.000000 2023-10-17 22:32:43,578 epoch 4 - iter 511/738 - loss 0.04635101 - time (sec): 35.07 - samples/sec: 3264.21 - lr: 0.000035 - momentum: 0.000000 2023-10-17 22:32:48,576 epoch 4 - iter 584/738 - loss 0.04536034 - time (sec): 40.07 - samples/sec: 3252.74 - lr: 0.000035 - momentum: 0.000000 2023-10-17 22:32:53,408 epoch 4 - iter 657/738 - loss 0.04699631 - time (sec): 44.90 - samples/sec: 3255.70 - lr: 0.000034 - momentum: 0.000000 2023-10-17 22:32:59,545 epoch 4 - iter 730/738 - loss 0.04985825 - time (sec): 51.04 - samples/sec: 3227.83 - lr: 0.000033 - momentum: 0.000000 2023-10-17 22:33:00,140 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:33:00,141 EPOCH 4 done: loss 0.0499 - lr: 0.000033 2023-10-17 22:33:11,846 DEV : loss 0.14125068485736847 - f1-score (micro avg) 0.815 2023-10-17 22:33:11,880 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:33:16,573 epoch 5 - iter 73/738 - loss 0.02879190 - time (sec): 4.69 - samples/sec: 3375.41 - lr: 0.000033 - momentum: 0.000000 2023-10-17 22:33:21,534 epoch 5 - iter 146/738 - loss 0.03371840 - time (sec): 9.65 - samples/sec: 3230.98 - lr: 0.000032 - momentum: 0.000000 2023-10-17 22:33:26,804 epoch 5 - iter 219/738 - loss 0.02945090 - time (sec): 14.92 - samples/sec: 3219.82 - lr: 0.000032 - momentum: 0.000000 2023-10-17 22:33:32,072 epoch 5 - iter 292/738 - loss 0.03027760 - time (sec): 20.19 - samples/sec: 3232.69 - lr: 0.000031 - momentum: 0.000000 2023-10-17 22:33:37,069 epoch 5 - iter 365/738 - loss 0.03506228 - time (sec): 25.19 - samples/sec: 3268.76 - lr: 0.000031 - momentum: 0.000000 2023-10-17 22:33:42,047 epoch 5 - iter 438/738 - loss 0.03543225 - time (sec): 30.17 - samples/sec: 3282.24 - lr: 0.000030 - momentum: 0.000000 2023-10-17 22:33:46,992 epoch 5 - iter 511/738 - loss 0.03479354 - time (sec): 35.11 - samples/sec: 3270.66 - lr: 0.000030 - momentum: 0.000000 2023-10-17 22:33:52,994 epoch 5 - iter 584/738 - loss 0.03639606 - time (sec): 41.11 - samples/sec: 3261.04 - lr: 0.000029 - momentum: 0.000000 2023-10-17 22:33:57,710 epoch 5 - iter 657/738 - loss 0.03555295 - time (sec): 45.83 - samples/sec: 3261.10 - lr: 0.000028 - momentum: 0.000000 2023-10-17 22:34:02,438 epoch 5 - iter 730/738 - loss 0.03486226 - time (sec): 50.56 - samples/sec: 3265.54 - lr: 0.000028 - momentum: 0.000000 2023-10-17 22:34:02,901 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:34:02,901 EPOCH 5 done: loss 0.0347 - lr: 0.000028 2023-10-17 22:34:15,042 DEV : loss 0.19004222750663757 - f1-score (micro avg) 0.8312 2023-10-17 22:34:15,088 saving best model 2023-10-17 22:34:15,573 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:34:20,441 epoch 6 - iter 73/738 - loss 0.02813745 - time (sec): 4.86 - samples/sec: 3296.59 - lr: 0.000027 - momentum: 0.000000 2023-10-17 22:34:25,602 epoch 6 - iter 146/738 - loss 0.02518261 - time (sec): 10.03 - samples/sec: 3225.85 - lr: 0.000027 - momentum: 0.000000 2023-10-17 22:34:31,064 epoch 6 - iter 219/738 - loss 0.02167308 - time (sec): 15.49 - samples/sec: 3216.28 - lr: 0.000026 - momentum: 0.000000 2023-10-17 22:34:35,610 epoch 6 - iter 292/738 - loss 0.02310727 - time (sec): 20.03 - samples/sec: 3242.49 - lr: 0.000026 - momentum: 0.000000 2023-10-17 22:34:40,377 epoch 6 - iter 365/738 - loss 0.02350712 - time (sec): 24.80 - samples/sec: 3262.02 - lr: 0.000025 - momentum: 0.000000 2023-10-17 22:34:45,894 epoch 6 - iter 438/738 - loss 0.02568561 - time (sec): 30.32 - samples/sec: 3251.89 - lr: 0.000025 - momentum: 0.000000 2023-10-17 22:34:50,637 epoch 6 - iter 511/738 - loss 0.02533559 - time (sec): 35.06 - samples/sec: 3248.03 - lr: 0.000024 - momentum: 0.000000 2023-10-17 22:34:55,852 epoch 6 - iter 584/738 - loss 0.02483365 - time (sec): 40.28 - samples/sec: 3242.98 - lr: 0.000023 - momentum: 0.000000 2023-10-17 22:35:01,847 epoch 6 - iter 657/738 - loss 0.02444670 - time (sec): 46.27 - samples/sec: 3218.62 - lr: 0.000023 - momentum: 0.000000 2023-10-17 22:35:06,861 epoch 6 - iter 730/738 - loss 0.02362799 - time (sec): 51.28 - samples/sec: 3215.12 - lr: 0.000022 - momentum: 0.000000 2023-10-17 22:35:07,312 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:35:07,313 EPOCH 6 done: loss 0.0236 - lr: 0.000022 2023-10-17 22:35:19,340 DEV : loss 0.20369166135787964 - f1-score (micro avg) 0.8327 2023-10-17 22:35:19,377 saving best model 2023-10-17 22:35:19,893 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:35:25,515 epoch 7 - iter 73/738 - loss 0.01350406 - time (sec): 5.62 - samples/sec: 3361.02 - lr: 0.000022 - momentum: 0.000000 2023-10-17 22:35:30,665 epoch 7 - iter 146/738 - loss 0.01445533 - time (sec): 10.77 - samples/sec: 3283.82 - lr: 0.000021 - momentum: 0.000000 2023-10-17 22:35:35,388 epoch 7 - iter 219/738 - loss 0.01349065 - time (sec): 15.49 - samples/sec: 3296.44 - lr: 0.000021 - momentum: 0.000000 2023-10-17 22:35:40,791 epoch 7 - iter 292/738 - loss 0.01184519 - time (sec): 20.90 - samples/sec: 3258.88 - lr: 0.000020 - momentum: 0.000000 2023-10-17 22:35:45,268 epoch 7 - iter 365/738 - loss 0.01302031 - time (sec): 25.37 - samples/sec: 3278.92 - lr: 0.000020 - momentum: 0.000000 2023-10-17 22:35:50,359 epoch 7 - iter 438/738 - loss 0.01425148 - time (sec): 30.46 - samples/sec: 3268.83 - lr: 0.000019 - momentum: 0.000000 2023-10-17 22:35:55,534 epoch 7 - iter 511/738 - loss 0.01540854 - time (sec): 35.64 - samples/sec: 3248.78 - lr: 0.000018 - momentum: 0.000000 2023-10-17 22:36:00,485 epoch 7 - iter 584/738 - loss 0.01593386 - time (sec): 40.59 - samples/sec: 3255.73 - lr: 0.000018 - momentum: 0.000000 2023-10-17 22:36:05,813 epoch 7 - iter 657/738 - loss 0.01714758 - time (sec): 45.92 - samples/sec: 3233.90 - lr: 0.000017 - momentum: 0.000000 2023-10-17 22:36:11,021 epoch 7 - iter 730/738 - loss 0.01677898 - time (sec): 51.13 - samples/sec: 3219.64 - lr: 0.000017 - momentum: 0.000000 2023-10-17 22:36:11,589 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:36:11,590 EPOCH 7 done: loss 0.0167 - lr: 0.000017 2023-10-17 22:36:23,302 DEV : loss 0.20619168877601624 - f1-score (micro avg) 0.8309 2023-10-17 22:36:23,335 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:36:28,762 epoch 8 - iter 73/738 - loss 0.01436214 - time (sec): 5.43 - samples/sec: 3505.01 - lr: 0.000016 - momentum: 0.000000 2023-10-17 22:36:33,706 epoch 8 - iter 146/738 - loss 0.01406720 - time (sec): 10.37 - samples/sec: 3337.79 - lr: 0.000016 - momentum: 0.000000 2023-10-17 22:36:39,250 epoch 8 - iter 219/738 - loss 0.01357334 - time (sec): 15.91 - samples/sec: 3295.54 - lr: 0.000015 - momentum: 0.000000 2023-10-17 22:36:44,612 epoch 8 - iter 292/738 - loss 0.01362606 - time (sec): 21.28 - samples/sec: 3277.39 - lr: 0.000015 - momentum: 0.000000 2023-10-17 22:36:49,362 epoch 8 - iter 365/738 - loss 0.01258376 - time (sec): 26.03 - samples/sec: 3288.03 - lr: 0.000014 - momentum: 0.000000 2023-10-17 22:36:54,351 epoch 8 - iter 438/738 - loss 0.01195634 - time (sec): 31.01 - samples/sec: 3256.51 - lr: 0.000013 - momentum: 0.000000 2023-10-17 22:36:59,301 epoch 8 - iter 511/738 - loss 0.01131119 - time (sec): 35.97 - samples/sec: 3247.35 - lr: 0.000013 - momentum: 0.000000 2023-10-17 22:37:04,249 epoch 8 - iter 584/738 - loss 0.01151810 - time (sec): 40.91 - samples/sec: 3262.34 - lr: 0.000012 - momentum: 0.000000 2023-10-17 22:37:09,202 epoch 8 - iter 657/738 - loss 0.01136472 - time (sec): 45.87 - samples/sec: 3258.75 - lr: 0.000012 - momentum: 0.000000 2023-10-17 22:37:13,756 epoch 8 - iter 730/738 - loss 0.01129012 - time (sec): 50.42 - samples/sec: 3264.76 - lr: 0.000011 - momentum: 0.000000 2023-10-17 22:37:14,310 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:37:14,310 EPOCH 8 done: loss 0.0116 - lr: 0.000011 2023-10-17 22:37:25,955 DEV : loss 0.20618367195129395 - f1-score (micro avg) 0.8382 2023-10-17 22:37:25,994 saving best model 2023-10-17 22:37:26,535 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:37:31,040 epoch 9 - iter 73/738 - loss 0.00179149 - time (sec): 4.50 - samples/sec: 3318.58 - lr: 0.000011 - momentum: 0.000000 2023-10-17 22:37:35,954 epoch 9 - iter 146/738 - loss 0.00388670 - time (sec): 9.42 - samples/sec: 3296.02 - lr: 0.000010 - momentum: 0.000000 2023-10-17 22:37:42,573 epoch 9 - iter 219/738 - loss 0.00558100 - time (sec): 16.04 - samples/sec: 3216.48 - lr: 0.000010 - momentum: 0.000000 2023-10-17 22:37:46,905 epoch 9 - iter 292/738 - loss 0.00579759 - time (sec): 20.37 - samples/sec: 3248.07 - lr: 0.000009 - momentum: 0.000000 2023-10-17 22:37:51,672 epoch 9 - iter 365/738 - loss 0.00592703 - time (sec): 25.14 - samples/sec: 3250.17 - lr: 0.000008 - momentum: 0.000000 2023-10-17 22:37:57,350 epoch 9 - iter 438/738 - loss 0.00668828 - time (sec): 30.81 - samples/sec: 3240.67 - lr: 0.000008 - momentum: 0.000000 2023-10-17 22:38:02,024 epoch 9 - iter 511/738 - loss 0.00651091 - time (sec): 35.49 - samples/sec: 3235.47 - lr: 0.000007 - momentum: 0.000000 2023-10-17 22:38:07,184 epoch 9 - iter 584/738 - loss 0.00667925 - time (sec): 40.65 - samples/sec: 3233.36 - lr: 0.000007 - momentum: 0.000000 2023-10-17 22:38:12,714 epoch 9 - iter 657/738 - loss 0.00716367 - time (sec): 46.18 - samples/sec: 3221.77 - lr: 0.000006 - momentum: 0.000000 2023-10-17 22:38:17,563 epoch 9 - iter 730/738 - loss 0.00684617 - time (sec): 51.03 - samples/sec: 3226.78 - lr: 0.000006 - momentum: 0.000000 2023-10-17 22:38:18,091 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:38:18,091 EPOCH 9 done: loss 0.0068 - lr: 0.000006 2023-10-17 22:38:29,523 DEV : loss 0.20809388160705566 - f1-score (micro avg) 0.8473 2023-10-17 22:38:29,554 saving best model 2023-10-17 22:38:30,106 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:38:34,557 epoch 10 - iter 73/738 - loss 0.00157154 - time (sec): 4.45 - samples/sec: 3307.08 - lr: 0.000005 - momentum: 0.000000 2023-10-17 22:38:39,511 epoch 10 - iter 146/738 - loss 0.00473884 - time (sec): 9.40 - samples/sec: 3262.89 - lr: 0.000004 - momentum: 0.000000 2023-10-17 22:38:44,413 epoch 10 - iter 219/738 - loss 0.00435182 - time (sec): 14.30 - samples/sec: 3245.94 - lr: 0.000004 - momentum: 0.000000 2023-10-17 22:38:50,176 epoch 10 - iter 292/738 - loss 0.00461898 - time (sec): 20.06 - samples/sec: 3265.73 - lr: 0.000003 - momentum: 0.000000 2023-10-17 22:38:54,905 epoch 10 - iter 365/738 - loss 0.00437464 - time (sec): 24.79 - samples/sec: 3267.62 - lr: 0.000003 - momentum: 0.000000 2023-10-17 22:39:00,079 epoch 10 - iter 438/738 - loss 0.00585767 - time (sec): 29.97 - samples/sec: 3265.78 - lr: 0.000002 - momentum: 0.000000 2023-10-17 22:39:04,813 epoch 10 - iter 511/738 - loss 0.00504414 - time (sec): 34.70 - samples/sec: 3278.60 - lr: 0.000002 - momentum: 0.000000 2023-10-17 22:39:09,643 epoch 10 - iter 584/738 - loss 0.00486786 - time (sec): 39.53 - samples/sec: 3281.88 - lr: 0.000001 - momentum: 0.000000 2023-10-17 22:39:15,461 epoch 10 - iter 657/738 - loss 0.00498413 - time (sec): 45.35 - samples/sec: 3278.45 - lr: 0.000001 - momentum: 0.000000 2023-10-17 22:39:20,217 epoch 10 - iter 730/738 - loss 0.00471586 - time (sec): 50.11 - samples/sec: 3274.82 - lr: 0.000000 - momentum: 0.000000 2023-10-17 22:39:20,859 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:39:20,859 EPOCH 10 done: loss 0.0047 - lr: 0.000000 2023-10-17 22:39:32,442 DEV : loss 0.21777039766311646 - f1-score (micro avg) 0.8438 2023-10-17 22:39:32,871 ---------------------------------------------------------------------------------------------------- 2023-10-17 22:39:32,873 Loading model from best epoch ... 2023-10-17 22:39:34,269 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-10-17 22:39:40,451 Results: - F-score (micro) 0.8122 - F-score (macro) 0.7141 - Accuracy 0.7007 By class: precision recall f1-score support loc 0.8672 0.8904 0.8787 858 pers 0.7737 0.8212 0.7967 537 org 0.5714 0.6364 0.6022 132 prod 0.6667 0.6885 0.6774 61 time 0.5714 0.6667 0.6154 54 micro avg 0.7929 0.8325 0.8122 1642 macro avg 0.6901 0.7406 0.7141 1642 weighted avg 0.7957 0.8325 0.8135 1642 2023-10-17 22:39:40,451 ----------------------------------------------------------------------------------------------------