File size: 4,670 Bytes
78aedc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language: nl
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: hmteams/teams-base-historic-multilingual-discriminator
widget:
- text: Professoren der Geneeskun dige Faculteit te Groningen alsook van de HH , Doctoren
    en Chirurgijns van Groningen , Friesland , Noordholland , Overijssel , Gelderland
    , Drenthe , in welke Provinciën dit Elixir als Medicament voor Mond en Tanden
    reeds jaren bakend is .
---

# Fine-tuned Flair Model on Dutch ICDAR-Europeana NER Dataset

This Flair model was fine-tuned on the
[Dutch ICDAR-Europeana](https://github.com/stefan-it/historic-domain-adaptation-icdar)
NER Dataset using hmTEAMS as backbone LM.

The ICDAR-Europeana NER Dataset is a preprocessed variant of the
[Europeana NER Corpora](https://github.com/EuropeanaNewspapers/ner-corpora) for Dutch and French.

The following NEs were annotated: `PER`, `LOC` and `ORG`.

# Results

We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:

* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`

And report micro F1-score on development set:

| Configuration   | Run 1        | Run 2        | Run 3        | Run 4        | Run 5        | Avg.         |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs8-e10-lr3e-05 | [0.8791][1]  | [0.88][2]    | [0.8744][3]  | [0.8843][4]  | [0.8829][5]  | 88.01 ± 0.34 |
| bs4-e10-lr3e-05 | [0.8599][6]  | [0.8681][7]  | [0.872][8]   | [0.8684][9]  | [0.8851][10] | 87.07 ± 0.82 |
| bs8-e10-lr5e-05 | [0.8688][11] | [0.86][12]   | [0.8726][13] | [0.8681][14] | [0.8772][15] | 86.93 ± 0.57 |
| bs4-e10-lr5e-05 | [0.8622][16] | [0.8684][17] | [0.8617][18] | [0.8667][19] | [0.8651][20] | 86.48 ± 0.26 |

[1]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-icdar-nl-hmteams-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5

The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.

More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).

# Acknowledgements

We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.

Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️