|
2023-10-17 09:02:10,577 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,579 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 09:02:10,579 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,579 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences |
|
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator |
|
2023-10-17 09:02:10,579 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,579 Train: 14465 sentences |
|
2023-10-17 09:02:10,579 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 09:02:10,579 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,579 Training Params: |
|
2023-10-17 09:02:10,579 - learning_rate: "3e-05" |
|
2023-10-17 09:02:10,579 - mini_batch_size: "4" |
|
2023-10-17 09:02:10,579 - max_epochs: "10" |
|
2023-10-17 09:02:10,579 - shuffle: "True" |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 Plugins: |
|
2023-10-17 09:02:10,580 - TensorboardLogger |
|
2023-10-17 09:02:10,580 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 09:02:10,580 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 Computation: |
|
2023-10-17 09:02:10,580 - compute on device: cuda:0 |
|
2023-10-17 09:02:10,580 - embedding storage: none |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:02:10,580 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 09:02:34,601 epoch 1 - iter 361/3617 - loss 1.57318286 - time (sec): 24.02 - samples/sec: 1618.04 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 09:02:57,319 epoch 1 - iter 722/3617 - loss 0.91675384 - time (sec): 46.74 - samples/sec: 1634.35 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 09:03:20,631 epoch 1 - iter 1083/3617 - loss 0.66327805 - time (sec): 70.05 - samples/sec: 1635.60 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 09:03:43,792 epoch 1 - iter 1444/3617 - loss 0.53397507 - time (sec): 93.21 - samples/sec: 1641.10 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 09:04:07,330 epoch 1 - iter 1805/3617 - loss 0.45416962 - time (sec): 116.75 - samples/sec: 1629.84 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 09:04:28,950 epoch 1 - iter 2166/3617 - loss 0.40035588 - time (sec): 138.37 - samples/sec: 1642.28 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 09:04:50,503 epoch 1 - iter 2527/3617 - loss 0.36212873 - time (sec): 159.92 - samples/sec: 1653.79 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 09:05:13,205 epoch 1 - iter 2888/3617 - loss 0.33159814 - time (sec): 182.62 - samples/sec: 1663.85 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 09:05:35,839 epoch 1 - iter 3249/3617 - loss 0.30611244 - time (sec): 205.26 - samples/sec: 1667.31 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 09:05:56,932 epoch 1 - iter 3610/3617 - loss 0.28747179 - time (sec): 226.35 - samples/sec: 1674.81 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 09:05:57,348 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:05:57,349 EPOCH 1 done: loss 0.2873 - lr: 0.000030 |
|
2023-10-17 09:06:03,627 DEV : loss 0.12736186385154724 - f1-score (micro avg) 0.5729 |
|
2023-10-17 09:06:03,669 saving best model |
|
2023-10-17 09:06:04,170 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:06:27,927 epoch 2 - iter 361/3617 - loss 0.10706765 - time (sec): 23.76 - samples/sec: 1541.66 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 09:06:52,938 epoch 2 - iter 722/3617 - loss 0.10073542 - time (sec): 48.77 - samples/sec: 1557.77 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 09:07:16,610 epoch 2 - iter 1083/3617 - loss 0.10019335 - time (sec): 72.44 - samples/sec: 1589.80 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 09:07:39,159 epoch 2 - iter 1444/3617 - loss 0.10373908 - time (sec): 94.99 - samples/sec: 1596.28 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 09:08:02,807 epoch 2 - iter 1805/3617 - loss 0.10168351 - time (sec): 118.64 - samples/sec: 1585.32 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 09:08:26,939 epoch 2 - iter 2166/3617 - loss 0.10048563 - time (sec): 142.77 - samples/sec: 1582.24 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 09:08:48,749 epoch 2 - iter 2527/3617 - loss 0.09886610 - time (sec): 164.58 - samples/sec: 1601.65 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 09:09:10,359 epoch 2 - iter 2888/3617 - loss 0.10012403 - time (sec): 186.19 - samples/sec: 1621.82 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 09:09:31,958 epoch 2 - iter 3249/3617 - loss 0.09783095 - time (sec): 207.79 - samples/sec: 1650.26 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 09:09:53,444 epoch 2 - iter 3610/3617 - loss 0.09771129 - time (sec): 229.27 - samples/sec: 1654.59 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 09:09:53,849 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:09:53,850 EPOCH 2 done: loss 0.0977 - lr: 0.000027 |
|
2023-10-17 09:10:00,951 DEV : loss 0.1343551129102707 - f1-score (micro avg) 0.6562 |
|
2023-10-17 09:10:00,995 saving best model |
|
2023-10-17 09:10:01,589 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:10:23,891 epoch 3 - iter 361/3617 - loss 0.07791442 - time (sec): 22.30 - samples/sec: 1689.74 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 09:10:48,004 epoch 3 - iter 722/3617 - loss 0.07169122 - time (sec): 46.41 - samples/sec: 1664.02 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 09:11:12,224 epoch 3 - iter 1083/3617 - loss 0.07458371 - time (sec): 70.63 - samples/sec: 1628.39 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 09:11:34,685 epoch 3 - iter 1444/3617 - loss 0.07550290 - time (sec): 93.09 - samples/sec: 1658.33 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 09:11:57,759 epoch 3 - iter 1805/3617 - loss 0.07532046 - time (sec): 116.17 - samples/sec: 1655.01 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 09:12:20,983 epoch 3 - iter 2166/3617 - loss 0.07566162 - time (sec): 139.39 - samples/sec: 1655.63 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 09:12:44,462 epoch 3 - iter 2527/3617 - loss 0.07561865 - time (sec): 162.87 - samples/sec: 1649.55 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 09:13:08,282 epoch 3 - iter 2888/3617 - loss 0.07691066 - time (sec): 186.69 - samples/sec: 1634.52 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 09:13:30,472 epoch 3 - iter 3249/3617 - loss 0.07626978 - time (sec): 208.88 - samples/sec: 1640.52 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 09:13:52,448 epoch 3 - iter 3610/3617 - loss 0.07614469 - time (sec): 230.86 - samples/sec: 1642.45 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 09:13:52,876 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:13:52,876 EPOCH 3 done: loss 0.0762 - lr: 0.000023 |
|
2023-10-17 09:13:59,262 DEV : loss 0.183589369058609 - f1-score (micro avg) 0.6295 |
|
2023-10-17 09:13:59,306 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:14:22,434 epoch 4 - iter 361/3617 - loss 0.05314260 - time (sec): 23.13 - samples/sec: 1683.44 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 09:14:44,723 epoch 4 - iter 722/3617 - loss 0.04744612 - time (sec): 45.42 - samples/sec: 1691.58 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 09:15:07,522 epoch 4 - iter 1083/3617 - loss 0.05024746 - time (sec): 68.21 - samples/sec: 1705.54 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 09:15:30,144 epoch 4 - iter 1444/3617 - loss 0.05060285 - time (sec): 90.84 - samples/sec: 1687.44 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 09:15:51,988 epoch 4 - iter 1805/3617 - loss 0.05209485 - time (sec): 112.68 - samples/sec: 1703.02 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 09:16:13,057 epoch 4 - iter 2166/3617 - loss 0.05270590 - time (sec): 133.75 - samples/sec: 1703.34 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 09:16:35,238 epoch 4 - iter 2527/3617 - loss 0.05313400 - time (sec): 155.93 - samples/sec: 1704.57 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 09:16:57,109 epoch 4 - iter 2888/3617 - loss 0.05411486 - time (sec): 177.80 - samples/sec: 1712.35 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 09:17:19,686 epoch 4 - iter 3249/3617 - loss 0.05477012 - time (sec): 200.38 - samples/sec: 1703.16 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 09:17:41,730 epoch 4 - iter 3610/3617 - loss 0.05488383 - time (sec): 222.42 - samples/sec: 1704.66 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 09:17:42,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:17:42,130 EPOCH 4 done: loss 0.0548 - lr: 0.000020 |
|
2023-10-17 09:17:48,498 DEV : loss 0.23047274351119995 - f1-score (micro avg) 0.6346 |
|
2023-10-17 09:17:48,542 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:18:11,645 epoch 5 - iter 361/3617 - loss 0.03877276 - time (sec): 23.10 - samples/sec: 1648.99 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 09:18:35,842 epoch 5 - iter 722/3617 - loss 0.03893797 - time (sec): 47.30 - samples/sec: 1573.53 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 09:19:00,608 epoch 5 - iter 1083/3617 - loss 0.03738715 - time (sec): 72.06 - samples/sec: 1566.11 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 09:19:24,105 epoch 5 - iter 1444/3617 - loss 0.03521727 - time (sec): 95.56 - samples/sec: 1570.21 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 09:19:49,600 epoch 5 - iter 1805/3617 - loss 0.03658251 - time (sec): 121.06 - samples/sec: 1563.80 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 09:20:12,773 epoch 5 - iter 2166/3617 - loss 0.03666109 - time (sec): 144.23 - samples/sec: 1576.19 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 09:20:35,723 epoch 5 - iter 2527/3617 - loss 0.03560606 - time (sec): 167.18 - samples/sec: 1592.90 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 09:20:59,453 epoch 5 - iter 2888/3617 - loss 0.03567818 - time (sec): 190.91 - samples/sec: 1591.22 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 09:21:21,835 epoch 5 - iter 3249/3617 - loss 0.03843292 - time (sec): 213.29 - samples/sec: 1598.18 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 09:21:45,332 epoch 5 - iter 3610/3617 - loss 0.03827749 - time (sec): 236.79 - samples/sec: 1601.48 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 09:21:45,766 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:21:45,766 EPOCH 5 done: loss 0.0386 - lr: 0.000017 |
|
2023-10-17 09:21:52,102 DEV : loss 0.30182531476020813 - f1-score (micro avg) 0.655 |
|
2023-10-17 09:21:52,151 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:22:13,654 epoch 6 - iter 361/3617 - loss 0.02971622 - time (sec): 21.50 - samples/sec: 1768.48 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 09:22:35,210 epoch 6 - iter 722/3617 - loss 0.02596294 - time (sec): 43.06 - samples/sec: 1771.12 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 09:22:56,691 epoch 6 - iter 1083/3617 - loss 0.02699636 - time (sec): 64.54 - samples/sec: 1753.12 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 09:23:18,245 epoch 6 - iter 1444/3617 - loss 0.02615175 - time (sec): 86.09 - samples/sec: 1759.27 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 09:23:39,965 epoch 6 - iter 1805/3617 - loss 0.02525762 - time (sec): 107.81 - samples/sec: 1757.56 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 09:24:03,115 epoch 6 - iter 2166/3617 - loss 0.02578467 - time (sec): 130.96 - samples/sec: 1734.42 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 09:24:25,467 epoch 6 - iter 2527/3617 - loss 0.02698358 - time (sec): 153.31 - samples/sec: 1728.18 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 09:24:47,331 epoch 6 - iter 2888/3617 - loss 0.02700357 - time (sec): 175.18 - samples/sec: 1728.11 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 09:25:09,745 epoch 6 - iter 3249/3617 - loss 0.02824365 - time (sec): 197.59 - samples/sec: 1727.15 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 09:25:31,716 epoch 6 - iter 3610/3617 - loss 0.02780229 - time (sec): 219.56 - samples/sec: 1726.51 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 09:25:32,140 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:25:32,140 EPOCH 6 done: loss 0.0277 - lr: 0.000013 |
|
2023-10-17 09:25:39,197 DEV : loss 0.35149648785591125 - f1-score (micro avg) 0.6416 |
|
2023-10-17 09:25:39,238 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:26:03,014 epoch 7 - iter 361/3617 - loss 0.01810299 - time (sec): 23.77 - samples/sec: 1687.02 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 09:26:26,361 epoch 7 - iter 722/3617 - loss 0.01752033 - time (sec): 47.12 - samples/sec: 1674.89 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 09:26:49,545 epoch 7 - iter 1083/3617 - loss 0.01868235 - time (sec): 70.31 - samples/sec: 1650.25 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 09:27:14,249 epoch 7 - iter 1444/3617 - loss 0.01923882 - time (sec): 95.01 - samples/sec: 1609.58 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 09:27:37,499 epoch 7 - iter 1805/3617 - loss 0.01853291 - time (sec): 118.26 - samples/sec: 1604.87 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 09:28:00,694 epoch 7 - iter 2166/3617 - loss 0.01937851 - time (sec): 141.45 - samples/sec: 1599.75 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 09:28:23,889 epoch 7 - iter 2527/3617 - loss 0.01913223 - time (sec): 164.65 - samples/sec: 1608.56 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 09:28:48,438 epoch 7 - iter 2888/3617 - loss 0.01935787 - time (sec): 189.20 - samples/sec: 1603.18 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 09:29:12,391 epoch 7 - iter 3249/3617 - loss 0.01962716 - time (sec): 213.15 - samples/sec: 1600.38 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 09:29:34,243 epoch 7 - iter 3610/3617 - loss 0.01941165 - time (sec): 235.00 - samples/sec: 1614.35 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 09:29:34,669 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:29:34,670 EPOCH 7 done: loss 0.0194 - lr: 0.000010 |
|
2023-10-17 09:29:41,014 DEV : loss 0.34877660870552063 - f1-score (micro avg) 0.6485 |
|
2023-10-17 09:29:41,056 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:30:02,968 epoch 8 - iter 361/3617 - loss 0.01268390 - time (sec): 21.91 - samples/sec: 1703.57 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 09:30:25,299 epoch 8 - iter 722/3617 - loss 0.01099667 - time (sec): 44.24 - samples/sec: 1711.21 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 09:30:48,107 epoch 8 - iter 1083/3617 - loss 0.01320618 - time (sec): 67.05 - samples/sec: 1694.10 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 09:31:11,789 epoch 8 - iter 1444/3617 - loss 0.01438812 - time (sec): 90.73 - samples/sec: 1666.77 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 09:31:33,254 epoch 8 - iter 1805/3617 - loss 0.01526598 - time (sec): 112.20 - samples/sec: 1689.19 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 09:31:54,672 epoch 8 - iter 2166/3617 - loss 0.01461418 - time (sec): 133.61 - samples/sec: 1697.90 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 09:32:16,127 epoch 8 - iter 2527/3617 - loss 0.01418461 - time (sec): 155.07 - samples/sec: 1709.65 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 09:32:37,708 epoch 8 - iter 2888/3617 - loss 0.01390302 - time (sec): 176.65 - samples/sec: 1717.72 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 09:33:01,690 epoch 8 - iter 3249/3617 - loss 0.01320267 - time (sec): 200.63 - samples/sec: 1699.52 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 09:33:24,874 epoch 8 - iter 3610/3617 - loss 0.01285080 - time (sec): 223.82 - samples/sec: 1693.91 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 09:33:25,290 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:33:25,290 EPOCH 8 done: loss 0.0129 - lr: 0.000007 |
|
2023-10-17 09:33:31,720 DEV : loss 0.38916581869125366 - f1-score (micro avg) 0.6549 |
|
2023-10-17 09:33:31,761 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:33:56,673 epoch 9 - iter 361/3617 - loss 0.01001985 - time (sec): 24.91 - samples/sec: 1557.19 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 09:34:20,402 epoch 9 - iter 722/3617 - loss 0.00865293 - time (sec): 48.64 - samples/sec: 1545.49 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 09:34:44,683 epoch 9 - iter 1083/3617 - loss 0.00726475 - time (sec): 72.92 - samples/sec: 1550.75 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 09:35:07,954 epoch 9 - iter 1444/3617 - loss 0.00785104 - time (sec): 96.19 - samples/sec: 1579.21 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 09:35:32,051 epoch 9 - iter 1805/3617 - loss 0.00836511 - time (sec): 120.29 - samples/sec: 1579.08 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 09:35:54,176 epoch 9 - iter 2166/3617 - loss 0.00795807 - time (sec): 142.41 - samples/sec: 1601.95 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 09:36:16,583 epoch 9 - iter 2527/3617 - loss 0.00807517 - time (sec): 164.82 - samples/sec: 1611.25 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 09:36:39,198 epoch 9 - iter 2888/3617 - loss 0.00797982 - time (sec): 187.44 - samples/sec: 1620.56 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 09:37:02,573 epoch 9 - iter 3249/3617 - loss 0.00787163 - time (sec): 210.81 - samples/sec: 1624.12 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 09:37:26,353 epoch 9 - iter 3610/3617 - loss 0.00821338 - time (sec): 234.59 - samples/sec: 1617.36 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 09:37:26,818 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:37:26,818 EPOCH 9 done: loss 0.0082 - lr: 0.000003 |
|
2023-10-17 09:37:34,515 DEV : loss 0.3819396495819092 - f1-score (micro avg) 0.6596 |
|
2023-10-17 09:37:34,561 saving best model |
|
2023-10-17 09:37:35,193 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:37:59,413 epoch 10 - iter 361/3617 - loss 0.00781618 - time (sec): 24.22 - samples/sec: 1593.10 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 09:38:22,354 epoch 10 - iter 722/3617 - loss 0.00571085 - time (sec): 47.16 - samples/sec: 1608.77 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 09:38:45,290 epoch 10 - iter 1083/3617 - loss 0.00491489 - time (sec): 70.10 - samples/sec: 1617.50 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 09:39:08,269 epoch 10 - iter 1444/3617 - loss 0.00460967 - time (sec): 93.07 - samples/sec: 1618.29 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 09:39:30,478 epoch 10 - iter 1805/3617 - loss 0.00449936 - time (sec): 115.28 - samples/sec: 1622.89 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 09:39:54,643 epoch 10 - iter 2166/3617 - loss 0.00457182 - time (sec): 139.45 - samples/sec: 1617.06 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 09:40:17,739 epoch 10 - iter 2527/3617 - loss 0.00425884 - time (sec): 162.54 - samples/sec: 1632.20 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 09:40:40,411 epoch 10 - iter 2888/3617 - loss 0.00465737 - time (sec): 185.22 - samples/sec: 1632.18 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 09:41:03,801 epoch 10 - iter 3249/3617 - loss 0.00458577 - time (sec): 208.61 - samples/sec: 1633.83 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 09:41:26,934 epoch 10 - iter 3610/3617 - loss 0.00474640 - time (sec): 231.74 - samples/sec: 1636.82 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 09:41:27,381 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:41:27,381 EPOCH 10 done: loss 0.0047 - lr: 0.000000 |
|
2023-10-17 09:41:33,760 DEV : loss 0.40882349014282227 - f1-score (micro avg) 0.66 |
|
2023-10-17 09:41:33,801 saving best model |
|
2023-10-17 09:41:34,823 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 09:41:34,824 Loading model from best epoch ... |
|
2023-10-17 09:41:36,920 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org |
|
2023-10-17 09:41:46,180 |
|
Results: |
|
- F-score (micro) 0.6469 |
|
- F-score (macro) 0.5083 |
|
- Accuracy 0.4891 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.6288 0.7766 0.6949 591 |
|
pers 0.5766 0.7591 0.6554 357 |
|
org 0.1857 0.1646 0.1745 79 |
|
|
|
micro avg 0.5850 0.7235 0.6469 1027 |
|
macro avg 0.4637 0.5668 0.5083 1027 |
|
weighted avg 0.5766 0.7235 0.6411 1027 |
|
|
|
2023-10-17 09:41:46,180 ---------------------------------------------------------------------------------------------------- |
|
|