Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697543574.4aef72135bc5.1113.5 +3 -0
- test.tsv +0 -0
- training.log +237 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7511c759fa3aeb9c82f40fa456b48e80471a9ffdd8126573871104e5b97425c2
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 11:56:51 0.0000 0.2669 0.1179 0.5754 0.4451 0.5019 0.3368
|
3 |
+
2 12:00:37 0.0000 0.1063 0.1570 0.5153 0.8078 0.6292 0.4716
|
4 |
+
3 12:04:26 0.0000 0.0853 0.2051 0.5385 0.7197 0.6161 0.4575
|
5 |
+
4 12:08:18 0.0000 0.0634 0.2212 0.5229 0.7574 0.6187 0.4591
|
6 |
+
5 12:12:14 0.0000 0.0447 0.2751 0.5412 0.7883 0.6418 0.4828
|
7 |
+
6 12:16:06 0.0000 0.0337 0.3224 0.5494 0.7323 0.6278 0.4655
|
8 |
+
7 12:19:51 0.0000 0.0202 0.3175 0.5696 0.6979 0.6272 0.4664
|
9 |
+
8 12:23:48 0.0000 0.0148 0.3656 0.5721 0.7803 0.6602 0.4985
|
10 |
+
9 12:27:50 0.0000 0.0077 0.4163 0.5656 0.7551 0.6467 0.4846
|
11 |
+
10 12:31:47 0.0000 0.0046 0.4362 0.5647 0.7689 0.6512 0.4898
|
runs/events.out.tfevents.1697543574.4aef72135bc5.1113.5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50d322420d90691ad2631ae64feb21dde46c4cc6fd8ca6c913ab52a0f12174a0
|
3 |
+
size 2030580
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 11:52:54,786 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 11:52:54,787 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 11:52:54,787 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 11:52:54,787 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
49 |
+
2023-10-17 11:52:54,787 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 11:52:54,787 Train: 14465 sentences
|
51 |
+
2023-10-17 11:52:54,788 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 11:52:54,788 Training Params:
|
54 |
+
2023-10-17 11:52:54,788 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 11:52:54,788 - mini_batch_size: "4"
|
56 |
+
2023-10-17 11:52:54,788 - max_epochs: "10"
|
57 |
+
2023-10-17 11:52:54,788 - shuffle: "True"
|
58 |
+
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 11:52:54,788 Plugins:
|
60 |
+
2023-10-17 11:52:54,788 - TensorboardLogger
|
61 |
+
2023-10-17 11:52:54,788 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 11:52:54,788 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 11:52:54,788 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 11:52:54,788 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 11:52:54,788 Computation:
|
67 |
+
2023-10-17 11:52:54,789 - compute on device: cuda:0
|
68 |
+
2023-10-17 11:52:54,789 - embedding storage: none
|
69 |
+
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 11:52:54,789 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
71 |
+
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 11:52:54,789 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 11:52:54,789 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 11:53:17,101 epoch 1 - iter 361/3617 - loss 1.45041553 - time (sec): 22.31 - samples/sec: 1698.14 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 11:53:38,886 epoch 1 - iter 722/3617 - loss 0.83716082 - time (sec): 44.10 - samples/sec: 1686.06 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 11:54:02,640 epoch 1 - iter 1083/3617 - loss 0.59781487 - time (sec): 67.85 - samples/sec: 1681.62 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 11:54:24,936 epoch 1 - iter 1444/3617 - loss 0.48149327 - time (sec): 90.15 - samples/sec: 1694.00 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 11:54:47,775 epoch 1 - iter 1805/3617 - loss 0.41319463 - time (sec): 112.98 - samples/sec: 1690.70 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 11:55:11,378 epoch 1 - iter 2166/3617 - loss 0.36558875 - time (sec): 136.59 - samples/sec: 1672.75 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 11:55:35,040 epoch 1 - iter 2527/3617 - loss 0.32938220 - time (sec): 160.25 - samples/sec: 1663.32 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 11:55:59,195 epoch 1 - iter 2888/3617 - loss 0.30249835 - time (sec): 184.40 - samples/sec: 1658.74 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 11:56:22,092 epoch 1 - iter 3249/3617 - loss 0.28225761 - time (sec): 207.30 - samples/sec: 1657.19 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 11:56:45,459 epoch 1 - iter 3610/3617 - loss 0.26717410 - time (sec): 230.67 - samples/sec: 1644.02 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 11:56:45,909 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 11:56:45,909 EPOCH 1 done: loss 0.2669 - lr: 0.000050
|
86 |
+
2023-10-17 11:56:51,334 DEV : loss 0.11786916851997375 - f1-score (micro avg) 0.5019
|
87 |
+
2023-10-17 11:56:51,374 saving best model
|
88 |
+
2023-10-17 11:56:51,877 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 11:57:15,292 epoch 2 - iter 361/3617 - loss 0.10557221 - time (sec): 23.41 - samples/sec: 1662.15 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 11:57:37,011 epoch 2 - iter 722/3617 - loss 0.10278944 - time (sec): 45.13 - samples/sec: 1710.38 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 11:57:58,661 epoch 2 - iter 1083/3617 - loss 0.10655278 - time (sec): 66.78 - samples/sec: 1709.09 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 11:58:21,263 epoch 2 - iter 1444/3617 - loss 0.10643025 - time (sec): 89.38 - samples/sec: 1696.68 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 11:58:44,442 epoch 2 - iter 1805/3617 - loss 0.10457147 - time (sec): 112.56 - samples/sec: 1674.98 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 11:59:07,714 epoch 2 - iter 2166/3617 - loss 0.10556253 - time (sec): 135.84 - samples/sec: 1671.06 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 11:59:30,682 epoch 2 - iter 2527/3617 - loss 0.10440273 - time (sec): 158.80 - samples/sec: 1673.80 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 11:59:51,173 epoch 2 - iter 2888/3617 - loss 0.10398260 - time (sec): 179.29 - samples/sec: 1692.95 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 12:00:09,116 epoch 2 - iter 3249/3617 - loss 0.10460700 - time (sec): 197.24 - samples/sec: 1736.35 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 12:00:30,262 epoch 2 - iter 3610/3617 - loss 0.10618003 - time (sec): 218.38 - samples/sec: 1736.86 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 12:00:30,682 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 12:00:30,682 EPOCH 2 done: loss 0.1063 - lr: 0.000044
|
101 |
+
2023-10-17 12:00:37,743 DEV : loss 0.15698249638080597 - f1-score (micro avg) 0.6292
|
102 |
+
2023-10-17 12:00:37,792 saving best model
|
103 |
+
2023-10-17 12:00:38,379 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 12:01:00,850 epoch 3 - iter 361/3617 - loss 0.08022559 - time (sec): 22.47 - samples/sec: 1636.31 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 12:01:23,625 epoch 3 - iter 722/3617 - loss 0.08069320 - time (sec): 45.24 - samples/sec: 1663.23 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 12:01:46,101 epoch 3 - iter 1083/3617 - loss 0.08181083 - time (sec): 67.72 - samples/sec: 1672.77 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 12:02:09,383 epoch 3 - iter 1444/3617 - loss 0.08325852 - time (sec): 91.00 - samples/sec: 1661.25 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 12:02:27,763 epoch 3 - iter 1805/3617 - loss 0.08237466 - time (sec): 109.38 - samples/sec: 1726.56 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 12:02:49,091 epoch 3 - iter 2166/3617 - loss 0.08389650 - time (sec): 130.71 - samples/sec: 1745.30 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 12:03:11,251 epoch 3 - iter 2527/3617 - loss 0.08517465 - time (sec): 152.87 - samples/sec: 1731.56 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 12:03:33,655 epoch 3 - iter 2888/3617 - loss 0.08551924 - time (sec): 175.27 - samples/sec: 1728.77 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 12:03:56,927 epoch 3 - iter 3249/3617 - loss 0.08551615 - time (sec): 198.55 - samples/sec: 1722.72 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 12:04:19,219 epoch 3 - iter 3610/3617 - loss 0.08533098 - time (sec): 220.84 - samples/sec: 1717.15 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 12:04:19,653 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 12:04:19,654 EPOCH 3 done: loss 0.0853 - lr: 0.000039
|
116 |
+
2023-10-17 12:04:26,008 DEV : loss 0.20511414110660553 - f1-score (micro avg) 0.6161
|
117 |
+
2023-10-17 12:04:26,049 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-17 12:04:49,116 epoch 4 - iter 361/3617 - loss 0.05873537 - time (sec): 23.07 - samples/sec: 1674.62 - lr: 0.000038 - momentum: 0.000000
|
119 |
+
2023-10-17 12:05:12,376 epoch 4 - iter 722/3617 - loss 0.06004159 - time (sec): 46.33 - samples/sec: 1645.73 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 12:05:35,066 epoch 4 - iter 1083/3617 - loss 0.06324927 - time (sec): 69.02 - samples/sec: 1673.37 - lr: 0.000037 - momentum: 0.000000
|
121 |
+
2023-10-17 12:05:57,755 epoch 4 - iter 1444/3617 - loss 0.06295022 - time (sec): 91.70 - samples/sec: 1671.02 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 12:06:20,466 epoch 4 - iter 1805/3617 - loss 0.06317630 - time (sec): 114.42 - samples/sec: 1668.82 - lr: 0.000036 - momentum: 0.000000
|
123 |
+
2023-10-17 12:06:42,695 epoch 4 - iter 2166/3617 - loss 0.06379107 - time (sec): 136.64 - samples/sec: 1673.67 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 12:07:04,646 epoch 4 - iter 2527/3617 - loss 0.06397835 - time (sec): 158.60 - samples/sec: 1681.56 - lr: 0.000035 - momentum: 0.000000
|
125 |
+
2023-10-17 12:07:27,971 epoch 4 - iter 2888/3617 - loss 0.06348311 - time (sec): 181.92 - samples/sec: 1678.47 - lr: 0.000034 - momentum: 0.000000
|
126 |
+
2023-10-17 12:07:49,326 epoch 4 - iter 3249/3617 - loss 0.06347814 - time (sec): 203.28 - samples/sec: 1686.73 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 12:08:11,036 epoch 4 - iter 3610/3617 - loss 0.06347373 - time (sec): 224.98 - samples/sec: 1686.43 - lr: 0.000033 - momentum: 0.000000
|
128 |
+
2023-10-17 12:08:11,436 ----------------------------------------------------------------------------------------------------
|
129 |
+
2023-10-17 12:08:11,436 EPOCH 4 done: loss 0.0634 - lr: 0.000033
|
130 |
+
2023-10-17 12:08:18,597 DEV : loss 0.22120679914951324 - f1-score (micro avg) 0.6187
|
131 |
+
2023-10-17 12:08:18,639 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-17 12:08:42,405 epoch 5 - iter 361/3617 - loss 0.03776153 - time (sec): 23.77 - samples/sec: 1596.80 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-17 12:09:05,646 epoch 5 - iter 722/3617 - loss 0.04135391 - time (sec): 47.01 - samples/sec: 1629.07 - lr: 0.000032 - momentum: 0.000000
|
134 |
+
2023-10-17 12:09:28,421 epoch 5 - iter 1083/3617 - loss 0.04270991 - time (sec): 69.78 - samples/sec: 1637.87 - lr: 0.000032 - momentum: 0.000000
|
135 |
+
2023-10-17 12:09:51,769 epoch 5 - iter 1444/3617 - loss 0.04260540 - time (sec): 93.13 - samples/sec: 1635.70 - lr: 0.000031 - momentum: 0.000000
|
136 |
+
2023-10-17 12:10:14,299 epoch 5 - iter 1805/3617 - loss 0.04110131 - time (sec): 115.66 - samples/sec: 1656.86 - lr: 0.000031 - momentum: 0.000000
|
137 |
+
2023-10-17 12:10:36,976 epoch 5 - iter 2166/3617 - loss 0.04177018 - time (sec): 138.34 - samples/sec: 1668.53 - lr: 0.000030 - momentum: 0.000000
|
138 |
+
2023-10-17 12:10:59,264 epoch 5 - iter 2527/3617 - loss 0.04324074 - time (sec): 160.62 - samples/sec: 1663.73 - lr: 0.000029 - momentum: 0.000000
|
139 |
+
2023-10-17 12:11:21,101 epoch 5 - iter 2888/3617 - loss 0.04411956 - time (sec): 182.46 - samples/sec: 1658.59 - lr: 0.000029 - momentum: 0.000000
|
140 |
+
2023-10-17 12:11:45,148 epoch 5 - iter 3249/3617 - loss 0.04348395 - time (sec): 206.51 - samples/sec: 1652.71 - lr: 0.000028 - momentum: 0.000000
|
141 |
+
2023-10-17 12:12:07,783 epoch 5 - iter 3610/3617 - loss 0.04478114 - time (sec): 229.14 - samples/sec: 1654.40 - lr: 0.000028 - momentum: 0.000000
|
142 |
+
2023-10-17 12:12:08,198 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-17 12:12:08,198 EPOCH 5 done: loss 0.0447 - lr: 0.000028
|
144 |
+
2023-10-17 12:12:14,607 DEV : loss 0.2750839591026306 - f1-score (micro avg) 0.6418
|
145 |
+
2023-10-17 12:12:14,652 saving best model
|
146 |
+
2023-10-17 12:12:15,246 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-17 12:12:37,546 epoch 6 - iter 361/3617 - loss 0.02896062 - time (sec): 22.30 - samples/sec: 1678.63 - lr: 0.000027 - momentum: 0.000000
|
148 |
+
2023-10-17 12:13:01,122 epoch 6 - iter 722/3617 - loss 0.02877240 - time (sec): 45.87 - samples/sec: 1629.00 - lr: 0.000027 - momentum: 0.000000
|
149 |
+
2023-10-17 12:13:23,419 epoch 6 - iter 1083/3617 - loss 0.03088311 - time (sec): 68.17 - samples/sec: 1654.59 - lr: 0.000026 - momentum: 0.000000
|
150 |
+
2023-10-17 12:13:45,707 epoch 6 - iter 1444/3617 - loss 0.03181763 - time (sec): 90.46 - samples/sec: 1672.21 - lr: 0.000026 - momentum: 0.000000
|
151 |
+
2023-10-17 12:14:07,684 epoch 6 - iter 1805/3617 - loss 0.03280478 - time (sec): 112.44 - samples/sec: 1689.30 - lr: 0.000025 - momentum: 0.000000
|
152 |
+
2023-10-17 12:14:30,091 epoch 6 - iter 2166/3617 - loss 0.03257395 - time (sec): 134.84 - samples/sec: 1691.26 - lr: 0.000024 - momentum: 0.000000
|
153 |
+
2023-10-17 12:14:52,451 epoch 6 - iter 2527/3617 - loss 0.03273840 - time (sec): 157.20 - samples/sec: 1693.80 - lr: 0.000024 - momentum: 0.000000
|
154 |
+
2023-10-17 12:15:16,751 epoch 6 - iter 2888/3617 - loss 0.03337305 - time (sec): 181.50 - samples/sec: 1675.04 - lr: 0.000023 - momentum: 0.000000
|
155 |
+
2023-10-17 12:15:39,289 epoch 6 - iter 3249/3617 - loss 0.03410165 - time (sec): 204.04 - samples/sec: 1671.99 - lr: 0.000023 - momentum: 0.000000
|
156 |
+
2023-10-17 12:15:59,015 epoch 6 - iter 3610/3617 - loss 0.03367272 - time (sec): 223.77 - samples/sec: 1695.44 - lr: 0.000022 - momentum: 0.000000
|
157 |
+
2023-10-17 12:15:59,460 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-17 12:15:59,460 EPOCH 6 done: loss 0.0337 - lr: 0.000022
|
159 |
+
2023-10-17 12:16:06,723 DEV : loss 0.3224092423915863 - f1-score (micro avg) 0.6278
|
160 |
+
2023-10-17 12:16:06,764 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-17 12:16:30,012 epoch 7 - iter 361/3617 - loss 0.01207785 - time (sec): 23.25 - samples/sec: 1632.13 - lr: 0.000022 - momentum: 0.000000
|
162 |
+
2023-10-17 12:16:52,430 epoch 7 - iter 722/3617 - loss 0.01588108 - time (sec): 45.66 - samples/sec: 1649.57 - lr: 0.000021 - momentum: 0.000000
|
163 |
+
2023-10-17 12:17:14,472 epoch 7 - iter 1083/3617 - loss 0.01914681 - time (sec): 67.71 - samples/sec: 1671.24 - lr: 0.000021 - momentum: 0.000000
|
164 |
+
2023-10-17 12:17:38,387 epoch 7 - iter 1444/3617 - loss 0.02093559 - time (sec): 91.62 - samples/sec: 1648.96 - lr: 0.000020 - momentum: 0.000000
|
165 |
+
2023-10-17 12:18:00,039 epoch 7 - iter 1805/3617 - loss 0.02030467 - time (sec): 113.27 - samples/sec: 1670.47 - lr: 0.000019 - momentum: 0.000000
|
166 |
+
2023-10-17 12:18:22,176 epoch 7 - iter 2166/3617 - loss 0.02042856 - time (sec): 135.41 - samples/sec: 1675.92 - lr: 0.000019 - momentum: 0.000000
|
167 |
+
2023-10-17 12:18:45,119 epoch 7 - iter 2527/3617 - loss 0.01975550 - time (sec): 158.35 - samples/sec: 1676.74 - lr: 0.000018 - momentum: 0.000000
|
168 |
+
2023-10-17 12:19:04,588 epoch 7 - iter 2888/3617 - loss 0.01949421 - time (sec): 177.82 - samples/sec: 1705.58 - lr: 0.000018 - momentum: 0.000000
|
169 |
+
2023-10-17 12:19:22,591 epoch 7 - iter 3249/3617 - loss 0.01975215 - time (sec): 195.82 - samples/sec: 1746.76 - lr: 0.000017 - momentum: 0.000000
|
170 |
+
2023-10-17 12:19:44,496 epoch 7 - iter 3610/3617 - loss 0.02006605 - time (sec): 217.73 - samples/sec: 1742.14 - lr: 0.000017 - momentum: 0.000000
|
171 |
+
2023-10-17 12:19:44,901 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-17 12:19:44,901 EPOCH 7 done: loss 0.0202 - lr: 0.000017
|
173 |
+
2023-10-17 12:19:51,251 DEV : loss 0.317545086145401 - f1-score (micro avg) 0.6272
|
174 |
+
2023-10-17 12:19:51,295 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 12:20:13,563 epoch 8 - iter 361/3617 - loss 0.01412422 - time (sec): 22.27 - samples/sec: 1693.14 - lr: 0.000016 - momentum: 0.000000
|
176 |
+
2023-10-17 12:20:37,743 epoch 8 - iter 722/3617 - loss 0.01808065 - time (sec): 46.45 - samples/sec: 1612.50 - lr: 0.000016 - momentum: 0.000000
|
177 |
+
2023-10-17 12:21:02,137 epoch 8 - iter 1083/3617 - loss 0.01681718 - time (sec): 70.84 - samples/sec: 1590.05 - lr: 0.000015 - momentum: 0.000000
|
178 |
+
2023-10-17 12:21:26,146 epoch 8 - iter 1444/3617 - loss 0.01601246 - time (sec): 94.85 - samples/sec: 1600.06 - lr: 0.000014 - momentum: 0.000000
|
179 |
+
2023-10-17 12:21:49,292 epoch 8 - iter 1805/3617 - loss 0.01568364 - time (sec): 117.99 - samples/sec: 1600.39 - lr: 0.000014 - momentum: 0.000000
|
180 |
+
2023-10-17 12:22:11,848 epoch 8 - iter 2166/3617 - loss 0.01635340 - time (sec): 140.55 - samples/sec: 1609.35 - lr: 0.000013 - momentum: 0.000000
|
181 |
+
2023-10-17 12:22:33,797 epoch 8 - iter 2527/3617 - loss 0.01630735 - time (sec): 162.50 - samples/sec: 1622.79 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2023-10-17 12:22:55,815 epoch 8 - iter 2888/3617 - loss 0.01515567 - time (sec): 184.52 - samples/sec: 1637.90 - lr: 0.000012 - momentum: 0.000000
|
183 |
+
2023-10-17 12:23:18,342 epoch 8 - iter 3249/3617 - loss 0.01483412 - time (sec): 207.05 - samples/sec: 1648.57 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2023-10-17 12:23:41,314 epoch 8 - iter 3610/3617 - loss 0.01486930 - time (sec): 230.02 - samples/sec: 1648.51 - lr: 0.000011 - momentum: 0.000000
|
185 |
+
2023-10-17 12:23:41,781 ----------------------------------------------------------------------------------------------------
|
186 |
+
2023-10-17 12:23:41,781 EPOCH 8 done: loss 0.0148 - lr: 0.000011
|
187 |
+
2023-10-17 12:23:48,164 DEV : loss 0.3655739724636078 - f1-score (micro avg) 0.6602
|
188 |
+
2023-10-17 12:23:48,207 saving best model
|
189 |
+
2023-10-17 12:23:48,840 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 12:24:11,655 epoch 9 - iter 361/3617 - loss 0.00915400 - time (sec): 22.81 - samples/sec: 1667.62 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-17 12:24:34,394 epoch 9 - iter 722/3617 - loss 0.00828080 - time (sec): 45.55 - samples/sec: 1634.29 - lr: 0.000010 - momentum: 0.000000
|
192 |
+
2023-10-17 12:24:57,398 epoch 9 - iter 1083/3617 - loss 0.00838778 - time (sec): 68.56 - samples/sec: 1624.06 - lr: 0.000009 - momentum: 0.000000
|
193 |
+
2023-10-17 12:25:21,466 epoch 9 - iter 1444/3617 - loss 0.00854920 - time (sec): 92.62 - samples/sec: 1609.74 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 12:25:44,800 epoch 9 - iter 1805/3617 - loss 0.00847143 - time (sec): 115.96 - samples/sec: 1621.53 - lr: 0.000008 - momentum: 0.000000
|
195 |
+
2023-10-17 12:26:07,965 epoch 9 - iter 2166/3617 - loss 0.00871744 - time (sec): 139.12 - samples/sec: 1625.29 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 12:26:31,239 epoch 9 - iter 2527/3617 - loss 0.00823885 - time (sec): 162.40 - samples/sec: 1627.58 - lr: 0.000007 - momentum: 0.000000
|
197 |
+
2023-10-17 12:26:55,849 epoch 9 - iter 2888/3617 - loss 0.00773025 - time (sec): 187.01 - samples/sec: 1618.47 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 12:27:19,397 epoch 9 - iter 3249/3617 - loss 0.00760834 - time (sec): 210.55 - samples/sec: 1614.92 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-17 12:27:43,113 epoch 9 - iter 3610/3617 - loss 0.00769799 - time (sec): 234.27 - samples/sec: 1618.48 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 12:27:43,552 ----------------------------------------------------------------------------------------------------
|
201 |
+
2023-10-17 12:27:43,552 EPOCH 9 done: loss 0.0077 - lr: 0.000006
|
202 |
+
2023-10-17 12:27:49,962 DEV : loss 0.4163112938404083 - f1-score (micro avg) 0.6467
|
203 |
+
2023-10-17 12:27:50,004 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 12:28:13,013 epoch 10 - iter 361/3617 - loss 0.00413246 - time (sec): 23.01 - samples/sec: 1593.63 - lr: 0.000005 - momentum: 0.000000
|
205 |
+
2023-10-17 12:28:35,587 epoch 10 - iter 722/3617 - loss 0.00334843 - time (sec): 45.58 - samples/sec: 1657.68 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-17 12:28:58,768 epoch 10 - iter 1083/3617 - loss 0.00444223 - time (sec): 68.76 - samples/sec: 1625.52 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-17 12:29:22,388 epoch 10 - iter 1444/3617 - loss 0.00421888 - time (sec): 92.38 - samples/sec: 1628.53 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 12:29:45,256 epoch 10 - iter 1805/3617 - loss 0.00399761 - time (sec): 115.25 - samples/sec: 1631.71 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 12:30:07,935 epoch 10 - iter 2166/3617 - loss 0.00472994 - time (sec): 137.93 - samples/sec: 1641.01 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 12:30:31,147 epoch 10 - iter 2527/3617 - loss 0.00456748 - time (sec): 161.14 - samples/sec: 1631.95 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 12:30:54,698 epoch 10 - iter 2888/3617 - loss 0.00474495 - time (sec): 184.69 - samples/sec: 1636.72 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-17 12:31:16,709 epoch 10 - iter 3249/3617 - loss 0.00463207 - time (sec): 206.70 - samples/sec: 1652.97 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 12:31:40,217 epoch 10 - iter 3610/3617 - loss 0.00465381 - time (sec): 230.21 - samples/sec: 1647.46 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-10-17 12:31:40,665 ----------------------------------------------------------------------------------------------------
|
215 |
+
2023-10-17 12:31:40,665 EPOCH 10 done: loss 0.0046 - lr: 0.000000
|
216 |
+
2023-10-17 12:31:47,136 DEV : loss 0.43618330359458923 - f1-score (micro avg) 0.6512
|
217 |
+
2023-10-17 12:31:48,461 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 12:31:48,463 Loading model from best epoch ...
|
219 |
+
2023-10-17 12:31:50,256 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
220 |
+
2023-10-17 12:31:58,239
|
221 |
+
Results:
|
222 |
+
- F-score (micro) 0.6485
|
223 |
+
- F-score (macro) 0.4908
|
224 |
+
- Accuracy 0.4915
|
225 |
+
|
226 |
+
By class:
|
227 |
+
precision recall f1-score support
|
228 |
+
|
229 |
+
loc 0.6662 0.7733 0.7157 591
|
230 |
+
pers 0.5293 0.7339 0.6150 357
|
231 |
+
org 0.2353 0.1013 0.1416 79
|
232 |
+
|
233 |
+
micro avg 0.5984 0.7079 0.6485 1027
|
234 |
+
macro avg 0.4769 0.5361 0.4908 1027
|
235 |
+
weighted avg 0.5855 0.7079 0.6366 1027
|
236 |
+
|
237 |
+
2023-10-17 12:31:58,239 ----------------------------------------------------------------------------------------------------
|