2023-10-17 14:24:14,252 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,254 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): ElectraModel( (embeddings): ElectraEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ElectraEncoder( (layer): ModuleList( (0-11): 12 x ElectraLayer( (attention): ElectraAttention( (self): ElectraSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ElectraSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ElectraIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ElectraOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=17, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-17 14:24:14,254 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,254 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences - NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator 2023-10-17 14:24:14,254 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,254 Train: 20847 sentences 2023-10-17 14:24:14,254 (train_with_dev=False, train_with_test=False) 2023-10-17 14:24:14,254 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,254 Training Params: 2023-10-17 14:24:14,255 - learning_rate: "5e-05" 2023-10-17 14:24:14,255 - mini_batch_size: "8" 2023-10-17 14:24:14,255 - max_epochs: "10" 2023-10-17 14:24:14,255 - shuffle: "True" 2023-10-17 14:24:14,255 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,255 Plugins: 2023-10-17 14:24:14,255 - TensorboardLogger 2023-10-17 14:24:14,255 - LinearScheduler | warmup_fraction: '0.1' 2023-10-17 14:24:14,255 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,255 Final evaluation on model from best epoch (best-model.pt) 2023-10-17 14:24:14,255 - metric: "('micro avg', 'f1-score')" 2023-10-17 14:24:14,255 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,255 Computation: 2023-10-17 14:24:14,255 - compute on device: cuda:0 2023-10-17 14:24:14,256 - embedding storage: none 2023-10-17 14:24:14,256 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,256 Model training base path: "hmbench-newseye/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" 2023-10-17 14:24:14,256 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,256 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:24:14,256 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-17 14:24:41,540 epoch 1 - iter 260/2606 - loss 1.85327979 - time (sec): 27.28 - samples/sec: 1310.12 - lr: 0.000005 - momentum: 0.000000 2023-10-17 14:25:09,627 epoch 1 - iter 520/2606 - loss 1.10728031 - time (sec): 55.37 - samples/sec: 1331.11 - lr: 0.000010 - momentum: 0.000000 2023-10-17 14:25:36,534 epoch 1 - iter 780/2606 - loss 0.83992496 - time (sec): 82.28 - samples/sec: 1359.25 - lr: 0.000015 - momentum: 0.000000 2023-10-17 14:26:04,493 epoch 1 - iter 1040/2606 - loss 0.68848892 - time (sec): 110.24 - samples/sec: 1356.82 - lr: 0.000020 - momentum: 0.000000 2023-10-17 14:26:31,440 epoch 1 - iter 1300/2606 - loss 0.59467316 - time (sec): 137.18 - samples/sec: 1364.66 - lr: 0.000025 - momentum: 0.000000 2023-10-17 14:26:57,934 epoch 1 - iter 1560/2606 - loss 0.53878529 - time (sec): 163.68 - samples/sec: 1360.76 - lr: 0.000030 - momentum: 0.000000 2023-10-17 14:27:25,638 epoch 1 - iter 1820/2606 - loss 0.48970257 - time (sec): 191.38 - samples/sec: 1363.10 - lr: 0.000035 - momentum: 0.000000 2023-10-17 14:27:53,036 epoch 1 - iter 2080/2606 - loss 0.45602118 - time (sec): 218.78 - samples/sec: 1349.95 - lr: 0.000040 - momentum: 0.000000 2023-10-17 14:28:20,128 epoch 1 - iter 2340/2606 - loss 0.42695326 - time (sec): 245.87 - samples/sec: 1350.40 - lr: 0.000045 - momentum: 0.000000 2023-10-17 14:28:46,892 epoch 1 - iter 2600/2606 - loss 0.40509791 - time (sec): 272.63 - samples/sec: 1345.44 - lr: 0.000050 - momentum: 0.000000 2023-10-17 14:28:47,527 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:28:47,527 EPOCH 1 done: loss 0.4046 - lr: 0.000050 2023-10-17 14:28:55,176 DEV : loss 0.14022067189216614 - f1-score (micro avg) 0.2959 2023-10-17 14:28:55,235 saving best model 2023-10-17 14:28:55,813 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:29:25,084 epoch 2 - iter 260/2606 - loss 0.17806520 - time (sec): 29.27 - samples/sec: 1262.84 - lr: 0.000049 - momentum: 0.000000 2023-10-17 14:29:52,834 epoch 2 - iter 520/2606 - loss 0.18056473 - time (sec): 57.02 - samples/sec: 1291.61 - lr: 0.000049 - momentum: 0.000000 2023-10-17 14:30:21,288 epoch 2 - iter 780/2606 - loss 0.17470102 - time (sec): 85.47 - samples/sec: 1294.70 - lr: 0.000048 - momentum: 0.000000 2023-10-17 14:30:48,148 epoch 2 - iter 1040/2606 - loss 0.17221863 - time (sec): 112.33 - samples/sec: 1308.82 - lr: 0.000048 - momentum: 0.000000 2023-10-17 14:31:16,076 epoch 2 - iter 1300/2606 - loss 0.16753259 - time (sec): 140.26 - samples/sec: 1324.35 - lr: 0.000047 - momentum: 0.000000 2023-10-17 14:31:43,316 epoch 2 - iter 1560/2606 - loss 0.16685811 - time (sec): 167.50 - samples/sec: 1327.25 - lr: 0.000047 - momentum: 0.000000 2023-10-17 14:32:10,687 epoch 2 - iter 1820/2606 - loss 0.16650143 - time (sec): 194.87 - samples/sec: 1322.48 - lr: 0.000046 - momentum: 0.000000 2023-10-17 14:32:39,701 epoch 2 - iter 2080/2606 - loss 0.16181597 - time (sec): 223.89 - samples/sec: 1313.90 - lr: 0.000046 - momentum: 0.000000 2023-10-17 14:33:08,969 epoch 2 - iter 2340/2606 - loss 0.15958413 - time (sec): 253.15 - samples/sec: 1308.43 - lr: 0.000045 - momentum: 0.000000 2023-10-17 14:33:36,676 epoch 2 - iter 2600/2606 - loss 0.16113565 - time (sec): 280.86 - samples/sec: 1306.23 - lr: 0.000044 - momentum: 0.000000 2023-10-17 14:33:37,189 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:33:37,189 EPOCH 2 done: loss 0.1610 - lr: 0.000044 2023-10-17 14:33:49,462 DEV : loss 0.16424185037612915 - f1-score (micro avg) 0.2857 2023-10-17 14:33:49,517 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:34:18,273 epoch 3 - iter 260/2606 - loss 0.13142213 - time (sec): 28.75 - samples/sec: 1297.78 - lr: 0.000044 - momentum: 0.000000 2023-10-17 14:34:45,491 epoch 3 - iter 520/2606 - loss 0.13076265 - time (sec): 55.97 - samples/sec: 1298.02 - lr: 0.000043 - momentum: 0.000000 2023-10-17 14:35:13,286 epoch 3 - iter 780/2606 - loss 0.12346611 - time (sec): 83.77 - samples/sec: 1272.88 - lr: 0.000043 - momentum: 0.000000 2023-10-17 14:35:43,054 epoch 3 - iter 1040/2606 - loss 0.12496563 - time (sec): 113.53 - samples/sec: 1282.05 - lr: 0.000042 - momentum: 0.000000 2023-10-17 14:36:09,740 epoch 3 - iter 1300/2606 - loss 0.11945146 - time (sec): 140.22 - samples/sec: 1309.70 - lr: 0.000042 - momentum: 0.000000 2023-10-17 14:36:37,350 epoch 3 - iter 1560/2606 - loss 0.11698591 - time (sec): 167.83 - samples/sec: 1317.13 - lr: 0.000041 - momentum: 0.000000 2023-10-17 14:37:03,654 epoch 3 - iter 1820/2606 - loss 0.11691007 - time (sec): 194.13 - samples/sec: 1311.04 - lr: 0.000041 - momentum: 0.000000 2023-10-17 14:37:31,807 epoch 3 - iter 2080/2606 - loss 0.11634199 - time (sec): 222.29 - samples/sec: 1314.95 - lr: 0.000040 - momentum: 0.000000 2023-10-17 14:38:00,450 epoch 3 - iter 2340/2606 - loss 0.11599351 - time (sec): 250.93 - samples/sec: 1310.02 - lr: 0.000039 - momentum: 0.000000 2023-10-17 14:38:28,873 epoch 3 - iter 2600/2606 - loss 0.11610612 - time (sec): 279.35 - samples/sec: 1311.26 - lr: 0.000039 - momentum: 0.000000 2023-10-17 14:38:29,622 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:38:29,622 EPOCH 3 done: loss 0.1159 - lr: 0.000039 2023-10-17 14:38:40,939 DEV : loss 0.16876201331615448 - f1-score (micro avg) 0.3775 2023-10-17 14:38:41,009 saving best model 2023-10-17 14:38:42,469 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:39:11,890 epoch 4 - iter 260/2606 - loss 0.07361030 - time (sec): 29.42 - samples/sec: 1265.45 - lr: 0.000038 - momentum: 0.000000 2023-10-17 14:39:39,718 epoch 4 - iter 520/2606 - loss 0.07660504 - time (sec): 57.24 - samples/sec: 1283.14 - lr: 0.000038 - momentum: 0.000000 2023-10-17 14:40:07,171 epoch 4 - iter 780/2606 - loss 0.07902913 - time (sec): 84.70 - samples/sec: 1289.64 - lr: 0.000037 - momentum: 0.000000 2023-10-17 14:40:34,548 epoch 4 - iter 1040/2606 - loss 0.08287969 - time (sec): 112.07 - samples/sec: 1295.86 - lr: 0.000037 - momentum: 0.000000 2023-10-17 14:41:01,134 epoch 4 - iter 1300/2606 - loss 0.08241178 - time (sec): 138.66 - samples/sec: 1322.92 - lr: 0.000036 - momentum: 0.000000 2023-10-17 14:41:28,978 epoch 4 - iter 1560/2606 - loss 0.08250940 - time (sec): 166.50 - samples/sec: 1317.76 - lr: 0.000036 - momentum: 0.000000 2023-10-17 14:41:56,865 epoch 4 - iter 1820/2606 - loss 0.08213798 - time (sec): 194.39 - samples/sec: 1319.13 - lr: 0.000035 - momentum: 0.000000 2023-10-17 14:42:24,148 epoch 4 - iter 2080/2606 - loss 0.08166340 - time (sec): 221.67 - samples/sec: 1314.38 - lr: 0.000034 - momentum: 0.000000 2023-10-17 14:42:51,904 epoch 4 - iter 2340/2606 - loss 0.08556568 - time (sec): 249.43 - samples/sec: 1323.51 - lr: 0.000034 - momentum: 0.000000 2023-10-17 14:43:18,720 epoch 4 - iter 2600/2606 - loss 0.08865792 - time (sec): 276.24 - samples/sec: 1326.87 - lr: 0.000033 - momentum: 0.000000 2023-10-17 14:43:19,407 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:43:19,408 EPOCH 4 done: loss 0.0885 - lr: 0.000033 2023-10-17 14:43:30,616 DEV : loss 0.3115158677101135 - f1-score (micro avg) 0.3586 2023-10-17 14:43:30,674 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:43:58,778 epoch 5 - iter 260/2606 - loss 0.05863728 - time (sec): 28.10 - samples/sec: 1338.70 - lr: 0.000033 - momentum: 0.000000 2023-10-17 14:44:26,178 epoch 5 - iter 520/2606 - loss 0.06625558 - time (sec): 55.50 - samples/sec: 1348.15 - lr: 0.000032 - momentum: 0.000000 2023-10-17 14:44:54,516 epoch 5 - iter 780/2606 - loss 0.06844922 - time (sec): 83.84 - samples/sec: 1359.79 - lr: 0.000032 - momentum: 0.000000 2023-10-17 14:45:23,817 epoch 5 - iter 1040/2606 - loss 0.06831173 - time (sec): 113.14 - samples/sec: 1346.93 - lr: 0.000031 - momentum: 0.000000 2023-10-17 14:45:53,393 epoch 5 - iter 1300/2606 - loss 0.06365912 - time (sec): 142.72 - samples/sec: 1319.89 - lr: 0.000031 - momentum: 0.000000 2023-10-17 14:46:23,598 epoch 5 - iter 1560/2606 - loss 0.06547327 - time (sec): 172.92 - samples/sec: 1305.77 - lr: 0.000030 - momentum: 0.000000 2023-10-17 14:46:50,708 epoch 5 - iter 1820/2606 - loss 0.06474902 - time (sec): 200.03 - samples/sec: 1311.72 - lr: 0.000029 - momentum: 0.000000 2023-10-17 14:47:18,016 epoch 5 - iter 2080/2606 - loss 0.06304130 - time (sec): 227.34 - samples/sec: 1306.77 - lr: 0.000029 - momentum: 0.000000 2023-10-17 14:47:44,935 epoch 5 - iter 2340/2606 - loss 0.06258972 - time (sec): 254.26 - samples/sec: 1308.18 - lr: 0.000028 - momentum: 0.000000 2023-10-17 14:48:11,273 epoch 5 - iter 2600/2606 - loss 0.06247218 - time (sec): 280.60 - samples/sec: 1306.66 - lr: 0.000028 - momentum: 0.000000 2023-10-17 14:48:11,872 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:48:11,872 EPOCH 5 done: loss 0.0626 - lr: 0.000028 2023-10-17 14:48:22,903 DEV : loss 0.35754862427711487 - f1-score (micro avg) 0.3492 2023-10-17 14:48:22,961 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:48:50,441 epoch 6 - iter 260/2606 - loss 0.04153328 - time (sec): 27.48 - samples/sec: 1300.53 - lr: 0.000027 - momentum: 0.000000 2023-10-17 14:49:19,441 epoch 6 - iter 520/2606 - loss 0.04069889 - time (sec): 56.48 - samples/sec: 1292.76 - lr: 0.000027 - momentum: 0.000000 2023-10-17 14:49:47,061 epoch 6 - iter 780/2606 - loss 0.04221365 - time (sec): 84.10 - samples/sec: 1265.34 - lr: 0.000026 - momentum: 0.000000 2023-10-17 14:50:14,629 epoch 6 - iter 1040/2606 - loss 0.04286026 - time (sec): 111.66 - samples/sec: 1276.99 - lr: 0.000026 - momentum: 0.000000 2023-10-17 14:50:44,251 epoch 6 - iter 1300/2606 - loss 0.04244173 - time (sec): 141.29 - samples/sec: 1281.41 - lr: 0.000025 - momentum: 0.000000 2023-10-17 14:51:13,157 epoch 6 - iter 1560/2606 - loss 0.04269662 - time (sec): 170.19 - samples/sec: 1275.44 - lr: 0.000024 - momentum: 0.000000 2023-10-17 14:51:40,843 epoch 6 - iter 1820/2606 - loss 0.04514594 - time (sec): 197.88 - samples/sec: 1283.68 - lr: 0.000024 - momentum: 0.000000 2023-10-17 14:52:08,773 epoch 6 - iter 2080/2606 - loss 0.04536499 - time (sec): 225.81 - samples/sec: 1297.42 - lr: 0.000023 - momentum: 0.000000 2023-10-17 14:52:36,271 epoch 6 - iter 2340/2606 - loss 0.04581858 - time (sec): 253.31 - samples/sec: 1296.31 - lr: 0.000023 - momentum: 0.000000 2023-10-17 14:53:03,992 epoch 6 - iter 2600/2606 - loss 0.04576906 - time (sec): 281.03 - samples/sec: 1303.50 - lr: 0.000022 - momentum: 0.000000 2023-10-17 14:53:04,741 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:53:04,741 EPOCH 6 done: loss 0.0457 - lr: 0.000022 2023-10-17 14:53:15,359 DEV : loss 0.3733910918235779 - f1-score (micro avg) 0.3597 2023-10-17 14:53:15,411 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:53:43,296 epoch 7 - iter 260/2606 - loss 0.03044292 - time (sec): 27.88 - samples/sec: 1313.32 - lr: 0.000022 - momentum: 0.000000 2023-10-17 14:54:10,604 epoch 7 - iter 520/2606 - loss 0.02603500 - time (sec): 55.19 - samples/sec: 1346.10 - lr: 0.000021 - momentum: 0.000000 2023-10-17 14:54:37,579 epoch 7 - iter 780/2606 - loss 0.02879241 - time (sec): 82.17 - samples/sec: 1329.28 - lr: 0.000021 - momentum: 0.000000 2023-10-17 14:55:06,764 epoch 7 - iter 1040/2606 - loss 0.02855577 - time (sec): 111.35 - samples/sec: 1329.11 - lr: 0.000020 - momentum: 0.000000 2023-10-17 14:55:34,201 epoch 7 - iter 1300/2606 - loss 0.02824816 - time (sec): 138.79 - samples/sec: 1343.78 - lr: 0.000019 - momentum: 0.000000 2023-10-17 14:56:01,313 epoch 7 - iter 1560/2606 - loss 0.03022833 - time (sec): 165.90 - samples/sec: 1346.40 - lr: 0.000019 - momentum: 0.000000 2023-10-17 14:56:29,641 epoch 7 - iter 1820/2606 - loss 0.02870834 - time (sec): 194.23 - samples/sec: 1345.69 - lr: 0.000018 - momentum: 0.000000 2023-10-17 14:56:56,189 epoch 7 - iter 2080/2606 - loss 0.02859220 - time (sec): 220.78 - samples/sec: 1350.30 - lr: 0.000018 - momentum: 0.000000 2023-10-17 14:57:23,440 epoch 7 - iter 2340/2606 - loss 0.02938788 - time (sec): 248.03 - samples/sec: 1338.16 - lr: 0.000017 - momentum: 0.000000 2023-10-17 14:57:49,641 epoch 7 - iter 2600/2606 - loss 0.02928523 - time (sec): 274.23 - samples/sec: 1338.32 - lr: 0.000017 - momentum: 0.000000 2023-10-17 14:57:50,166 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:57:50,166 EPOCH 7 done: loss 0.0293 - lr: 0.000017 2023-10-17 14:58:01,362 DEV : loss 0.39208441972732544 - f1-score (micro avg) 0.376 2023-10-17 14:58:01,418 ---------------------------------------------------------------------------------------------------- 2023-10-17 14:58:29,386 epoch 8 - iter 260/2606 - loss 0.01804159 - time (sec): 27.97 - samples/sec: 1244.37 - lr: 0.000016 - momentum: 0.000000 2023-10-17 14:58:55,174 epoch 8 - iter 520/2606 - loss 0.01839017 - time (sec): 53.75 - samples/sec: 1315.63 - lr: 0.000016 - momentum: 0.000000 2023-10-17 14:59:21,421 epoch 8 - iter 780/2606 - loss 0.01982613 - time (sec): 80.00 - samples/sec: 1364.08 - lr: 0.000015 - momentum: 0.000000 2023-10-17 14:59:48,015 epoch 8 - iter 1040/2606 - loss 0.02178505 - time (sec): 106.60 - samples/sec: 1358.26 - lr: 0.000014 - momentum: 0.000000 2023-10-17 15:00:15,164 epoch 8 - iter 1300/2606 - loss 0.02262431 - time (sec): 133.74 - samples/sec: 1348.86 - lr: 0.000014 - momentum: 0.000000 2023-10-17 15:00:42,859 epoch 8 - iter 1560/2606 - loss 0.02170814 - time (sec): 161.44 - samples/sec: 1343.38 - lr: 0.000013 - momentum: 0.000000 2023-10-17 15:01:10,224 epoch 8 - iter 1820/2606 - loss 0.02174864 - time (sec): 188.80 - samples/sec: 1350.02 - lr: 0.000013 - momentum: 0.000000 2023-10-17 15:01:38,355 epoch 8 - iter 2080/2606 - loss 0.02146193 - time (sec): 216.93 - samples/sec: 1343.56 - lr: 0.000012 - momentum: 0.000000 2023-10-17 15:02:07,541 epoch 8 - iter 2340/2606 - loss 0.02265158 - time (sec): 246.12 - samples/sec: 1338.24 - lr: 0.000012 - momentum: 0.000000 2023-10-17 15:02:34,852 epoch 8 - iter 2600/2606 - loss 0.02262534 - time (sec): 273.43 - samples/sec: 1340.03 - lr: 0.000011 - momentum: 0.000000 2023-10-17 15:02:35,458 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:02:35,458 EPOCH 8 done: loss 0.0227 - lr: 0.000011 2023-10-17 15:02:47,842 DEV : loss 0.4110426604747772 - f1-score (micro avg) 0.3964 2023-10-17 15:02:47,905 saving best model 2023-10-17 15:02:49,402 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:03:16,976 epoch 9 - iter 260/2606 - loss 0.01333780 - time (sec): 27.57 - samples/sec: 1333.90 - lr: 0.000011 - momentum: 0.000000 2023-10-17 15:03:44,619 epoch 9 - iter 520/2606 - loss 0.01398241 - time (sec): 55.21 - samples/sec: 1356.45 - lr: 0.000010 - momentum: 0.000000 2023-10-17 15:04:11,530 epoch 9 - iter 780/2606 - loss 0.01371935 - time (sec): 82.12 - samples/sec: 1357.95 - lr: 0.000009 - momentum: 0.000000 2023-10-17 15:04:38,342 epoch 9 - iter 1040/2606 - loss 0.01381938 - time (sec): 108.93 - samples/sec: 1354.11 - lr: 0.000009 - momentum: 0.000000 2023-10-17 15:05:04,756 epoch 9 - iter 1300/2606 - loss 0.01407551 - time (sec): 135.35 - samples/sec: 1366.05 - lr: 0.000008 - momentum: 0.000000 2023-10-17 15:05:33,009 epoch 9 - iter 1560/2606 - loss 0.01393126 - time (sec): 163.60 - samples/sec: 1357.67 - lr: 0.000008 - momentum: 0.000000 2023-10-17 15:06:00,019 epoch 9 - iter 1820/2606 - loss 0.01360054 - time (sec): 190.61 - samples/sec: 1344.36 - lr: 0.000007 - momentum: 0.000000 2023-10-17 15:06:29,986 epoch 9 - iter 2080/2606 - loss 0.01397962 - time (sec): 220.58 - samples/sec: 1349.15 - lr: 0.000007 - momentum: 0.000000 2023-10-17 15:06:55,256 epoch 9 - iter 2340/2606 - loss 0.01383784 - time (sec): 245.85 - samples/sec: 1344.69 - lr: 0.000006 - momentum: 0.000000 2023-10-17 15:07:21,400 epoch 9 - iter 2600/2606 - loss 0.01329672 - time (sec): 271.99 - samples/sec: 1348.44 - lr: 0.000006 - momentum: 0.000000 2023-10-17 15:07:21,934 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:07:21,935 EPOCH 9 done: loss 0.0133 - lr: 0.000006 2023-10-17 15:07:33,497 DEV : loss 0.487269788980484 - f1-score (micro avg) 0.3764 2023-10-17 15:07:33,558 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:08:01,040 epoch 10 - iter 260/2606 - loss 0.00522579 - time (sec): 27.48 - samples/sec: 1369.25 - lr: 0.000005 - momentum: 0.000000 2023-10-17 15:08:27,874 epoch 10 - iter 520/2606 - loss 0.00713905 - time (sec): 54.31 - samples/sec: 1357.92 - lr: 0.000004 - momentum: 0.000000 2023-10-17 15:08:54,168 epoch 10 - iter 780/2606 - loss 0.00706736 - time (sec): 80.61 - samples/sec: 1347.44 - lr: 0.000004 - momentum: 0.000000 2023-10-17 15:09:19,702 epoch 10 - iter 1040/2606 - loss 0.00700287 - time (sec): 106.14 - samples/sec: 1349.51 - lr: 0.000003 - momentum: 0.000000 2023-10-17 15:09:47,107 epoch 10 - iter 1300/2606 - loss 0.00826984 - time (sec): 133.55 - samples/sec: 1343.57 - lr: 0.000003 - momentum: 0.000000 2023-10-17 15:10:13,743 epoch 10 - iter 1560/2606 - loss 0.00865486 - time (sec): 160.18 - samples/sec: 1338.36 - lr: 0.000002 - momentum: 0.000000 2023-10-17 15:10:39,805 epoch 10 - iter 1820/2606 - loss 0.00972362 - time (sec): 186.24 - samples/sec: 1342.74 - lr: 0.000002 - momentum: 0.000000 2023-10-17 15:11:07,610 epoch 10 - iter 2080/2606 - loss 0.01024238 - time (sec): 214.05 - samples/sec: 1347.46 - lr: 0.000001 - momentum: 0.000000 2023-10-17 15:11:36,590 epoch 10 - iter 2340/2606 - loss 0.01033785 - time (sec): 243.03 - samples/sec: 1353.12 - lr: 0.000001 - momentum: 0.000000 2023-10-17 15:12:04,385 epoch 10 - iter 2600/2606 - loss 0.01015142 - time (sec): 270.82 - samples/sec: 1354.66 - lr: 0.000000 - momentum: 0.000000 2023-10-17 15:12:04,937 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:12:04,937 EPOCH 10 done: loss 0.0101 - lr: 0.000000 2023-10-17 15:12:17,266 DEV : loss 0.5094925761222839 - f1-score (micro avg) 0.3588 2023-10-17 15:12:17,894 ---------------------------------------------------------------------------------------------------- 2023-10-17 15:12:17,896 Loading model from best epoch ... 2023-10-17 15:12:20,219 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd 2023-10-17 15:12:39,854 Results: - F-score (micro) 0.4493 - F-score (macro) 0.3128 - Accuracy 0.2933 By class: precision recall f1-score support LOC 0.4879 0.5132 0.5002 1214 PER 0.4061 0.4814 0.4405 808 ORG 0.3013 0.3201 0.3104 353 HumanProd 0.0000 0.0000 0.0000 15 micro avg 0.4297 0.4707 0.4493 2390 macro avg 0.2988 0.3287 0.3128 2390 weighted avg 0.4296 0.4707 0.4489 2390 2023-10-17 15:12:39,854 ----------------------------------------------------------------------------------------------------