Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697581789.3ae7c61396a7.1160.13 +3 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9126aa1028995b0d3fd4c933762155600909b0cddd9a280924c60f1b00fdc7ab
|
3 |
+
size 440954373
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:34:32 0.0000 0.4278 0.1946 0.1970 0.6307 0.3003 0.1781
|
3 |
+
2 22:39:22 0.0000 0.1643 0.1782 0.2232 0.5511 0.3177 0.1904
|
4 |
+
3 22:44:16 0.0000 0.1164 0.1867 0.3195 0.4943 0.3881 0.2430
|
5 |
+
4 22:49:04 0.0000 0.0840 0.2567 0.2923 0.6117 0.3956 0.2475
|
6 |
+
5 22:53:55 0.0000 0.0585 0.2786 0.3244 0.5473 0.4073 0.2585
|
7 |
+
6 22:58:45 0.0000 0.0455 0.3161 0.2639 0.5758 0.3619 0.2222
|
8 |
+
7 23:03:35 0.0000 0.0299 0.4404 0.2663 0.6250 0.3735 0.2313
|
9 |
+
8 23:08:26 0.0000 0.0227 0.4419 0.2718 0.6326 0.3802 0.2360
|
10 |
+
9 23:13:18 0.0000 0.0151 0.4639 0.3010 0.6458 0.4106 0.2597
|
11 |
+
10 23:18:12 0.0000 0.0093 0.4872 0.2857 0.6326 0.3936 0.2465
|
runs/events.out.tfevents.1697581789.3ae7c61396a7.1160.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521969546f1d29ef3a089ab15388450935922ad1f78be8647bf2a6e1d6e7466e
|
3 |
+
size 1464420
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 22:29:49,087 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 22:29:49,089 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 22:29:49,089 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 22:29:49,089 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
49 |
+
2023-10-17 22:29:49,089 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 22:29:49,089 Train: 20847 sentences
|
51 |
+
2023-10-17 22:29:49,089 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 22:29:49,089 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 22:29:49,089 Training Params:
|
54 |
+
2023-10-17 22:29:49,089 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 22:29:49,089 - mini_batch_size: "8"
|
56 |
+
2023-10-17 22:29:49,090 - max_epochs: "10"
|
57 |
+
2023-10-17 22:29:49,090 - shuffle: "True"
|
58 |
+
2023-10-17 22:29:49,090 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 22:29:49,090 Plugins:
|
60 |
+
2023-10-17 22:29:49,090 - TensorboardLogger
|
61 |
+
2023-10-17 22:29:49,090 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 22:29:49,090 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 22:29:49,090 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 22:29:49,090 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 22:29:49,090 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 22:29:49,090 Computation:
|
67 |
+
2023-10-17 22:29:49,090 - compute on device: cuda:0
|
68 |
+
2023-10-17 22:29:49,090 - embedding storage: none
|
69 |
+
2023-10-17 22:29:49,090 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 22:29:49,090 Model training base path: "hmbench-newseye/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
71 |
+
2023-10-17 22:29:49,091 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 22:29:49,091 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 22:29:49,091 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 22:30:17,028 epoch 1 - iter 260/2606 - loss 2.02848927 - time (sec): 27.94 - samples/sec: 1371.19 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 22:30:44,429 epoch 1 - iter 520/2606 - loss 1.21844947 - time (sec): 55.34 - samples/sec: 1346.96 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 22:31:12,228 epoch 1 - iter 780/2606 - loss 0.91990652 - time (sec): 83.14 - samples/sec: 1318.02 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 22:31:40,051 epoch 1 - iter 1040/2606 - loss 0.74718680 - time (sec): 110.96 - samples/sec: 1326.72 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 22:32:06,348 epoch 1 - iter 1300/2606 - loss 0.64893783 - time (sec): 137.26 - samples/sec: 1328.81 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 22:32:33,330 epoch 1 - iter 1560/2606 - loss 0.57578103 - time (sec): 164.24 - samples/sec: 1328.85 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 22:32:59,917 epoch 1 - iter 1820/2606 - loss 0.52157619 - time (sec): 190.82 - samples/sec: 1348.16 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 22:33:28,070 epoch 1 - iter 2080/2606 - loss 0.48435644 - time (sec): 218.98 - samples/sec: 1347.86 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 22:33:56,168 epoch 1 - iter 2340/2606 - loss 0.45266046 - time (sec): 247.07 - samples/sec: 1341.87 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 22:34:23,642 epoch 1 - iter 2600/2606 - loss 0.42860811 - time (sec): 274.55 - samples/sec: 1334.20 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 22:34:24,375 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 22:34:24,375 EPOCH 1 done: loss 0.4278 - lr: 0.000050
|
86 |
+
2023-10-17 22:34:31,962 DEV : loss 0.19458557665348053 - f1-score (micro avg) 0.3003
|
87 |
+
2023-10-17 22:34:32,021 saving best model
|
88 |
+
2023-10-17 22:34:32,611 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 22:35:00,780 epoch 2 - iter 260/2606 - loss 0.18573805 - time (sec): 28.17 - samples/sec: 1284.73 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 22:35:28,795 epoch 2 - iter 520/2606 - loss 0.17536530 - time (sec): 56.18 - samples/sec: 1294.10 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 22:35:57,211 epoch 2 - iter 780/2606 - loss 0.18464606 - time (sec): 84.60 - samples/sec: 1284.88 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 22:36:24,191 epoch 2 - iter 1040/2606 - loss 0.18572133 - time (sec): 111.58 - samples/sec: 1288.97 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 22:36:52,771 epoch 2 - iter 1300/2606 - loss 0.17573034 - time (sec): 140.16 - samples/sec: 1295.79 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 22:37:20,317 epoch 2 - iter 1560/2606 - loss 0.17431997 - time (sec): 167.70 - samples/sec: 1299.62 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 22:37:46,652 epoch 2 - iter 1820/2606 - loss 0.17276740 - time (sec): 194.04 - samples/sec: 1300.78 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 22:38:14,196 epoch 2 - iter 2080/2606 - loss 0.16921817 - time (sec): 221.58 - samples/sec: 1320.04 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 22:38:43,447 epoch 2 - iter 2340/2606 - loss 0.16736292 - time (sec): 250.83 - samples/sec: 1323.21 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 22:39:09,856 epoch 2 - iter 2600/2606 - loss 0.16436618 - time (sec): 277.24 - samples/sec: 1322.57 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 22:39:10,492 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 22:39:10,492 EPOCH 2 done: loss 0.1643 - lr: 0.000044
|
101 |
+
2023-10-17 22:39:22,270 DEV : loss 0.17822161316871643 - f1-score (micro avg) 0.3177
|
102 |
+
2023-10-17 22:39:22,322 saving best model
|
103 |
+
2023-10-17 22:39:23,752 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 22:39:51,896 epoch 3 - iter 260/2606 - loss 0.12920206 - time (sec): 28.14 - samples/sec: 1282.36 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 22:40:20,405 epoch 3 - iter 520/2606 - loss 0.11453609 - time (sec): 56.64 - samples/sec: 1296.29 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 22:40:48,913 epoch 3 - iter 780/2606 - loss 0.11650277 - time (sec): 85.15 - samples/sec: 1267.04 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 22:41:17,273 epoch 3 - iter 1040/2606 - loss 0.12299209 - time (sec): 113.51 - samples/sec: 1291.79 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 22:41:44,017 epoch 3 - iter 1300/2606 - loss 0.12055576 - time (sec): 140.26 - samples/sec: 1302.55 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 22:42:10,968 epoch 3 - iter 1560/2606 - loss 0.11843686 - time (sec): 167.21 - samples/sec: 1311.30 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 22:42:39,419 epoch 3 - iter 1820/2606 - loss 0.11721896 - time (sec): 195.66 - samples/sec: 1315.84 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 22:43:07,827 epoch 3 - iter 2080/2606 - loss 0.11733893 - time (sec): 224.07 - samples/sec: 1312.43 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 22:43:34,880 epoch 3 - iter 2340/2606 - loss 0.11675506 - time (sec): 251.12 - samples/sec: 1309.40 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 22:44:03,157 epoch 3 - iter 2600/2606 - loss 0.11643558 - time (sec): 279.40 - samples/sec: 1311.26 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 22:44:03,732 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 22:44:03,733 EPOCH 3 done: loss 0.1164 - lr: 0.000039
|
116 |
+
2023-10-17 22:44:16,079 DEV : loss 0.18669994175434113 - f1-score (micro avg) 0.3881
|
117 |
+
2023-10-17 22:44:16,134 saving best model
|
118 |
+
2023-10-17 22:44:17,540 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 22:44:44,788 epoch 4 - iter 260/2606 - loss 0.08494930 - time (sec): 27.24 - samples/sec: 1367.76 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 22:45:12,077 epoch 4 - iter 520/2606 - loss 0.07898452 - time (sec): 54.53 - samples/sec: 1348.42 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 22:45:39,790 epoch 4 - iter 780/2606 - loss 0.07898936 - time (sec): 82.25 - samples/sec: 1351.84 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 22:46:06,642 epoch 4 - iter 1040/2606 - loss 0.08216188 - time (sec): 109.10 - samples/sec: 1340.12 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 22:46:34,413 epoch 4 - iter 1300/2606 - loss 0.08359594 - time (sec): 136.87 - samples/sec: 1330.39 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 22:47:01,446 epoch 4 - iter 1560/2606 - loss 0.08486629 - time (sec): 163.90 - samples/sec: 1332.80 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 22:47:28,235 epoch 4 - iter 1820/2606 - loss 0.08429319 - time (sec): 190.69 - samples/sec: 1339.58 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 22:47:56,351 epoch 4 - iter 2080/2606 - loss 0.08455278 - time (sec): 218.81 - samples/sec: 1342.81 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 22:48:23,794 epoch 4 - iter 2340/2606 - loss 0.08431644 - time (sec): 246.25 - samples/sec: 1339.45 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 22:48:52,450 epoch 4 - iter 2600/2606 - loss 0.08411450 - time (sec): 274.91 - samples/sec: 1332.31 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 22:48:53,209 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 22:48:53,210 EPOCH 4 done: loss 0.0840 - lr: 0.000033
|
131 |
+
2023-10-17 22:49:04,552 DEV : loss 0.2566596269607544 - f1-score (micro avg) 0.3956
|
132 |
+
2023-10-17 22:49:04,607 saving best model
|
133 |
+
2023-10-17 22:49:06,082 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 22:49:35,940 epoch 5 - iter 260/2606 - loss 0.04669936 - time (sec): 29.85 - samples/sec: 1205.57 - lr: 0.000033 - momentum: 0.000000
|
135 |
+
2023-10-17 22:50:03,138 epoch 5 - iter 520/2606 - loss 0.05345590 - time (sec): 57.05 - samples/sec: 1309.26 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 22:50:32,012 epoch 5 - iter 780/2606 - loss 0.05303634 - time (sec): 85.93 - samples/sec: 1325.22 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-17 22:50:59,501 epoch 5 - iter 1040/2606 - loss 0.05440153 - time (sec): 113.41 - samples/sec: 1314.75 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 22:51:27,926 epoch 5 - iter 1300/2606 - loss 0.05722889 - time (sec): 141.84 - samples/sec: 1310.04 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-17 22:51:55,765 epoch 5 - iter 1560/2606 - loss 0.05872981 - time (sec): 169.68 - samples/sec: 1319.28 - lr: 0.000030 - momentum: 0.000000
|
140 |
+
2023-10-17 22:52:23,788 epoch 5 - iter 1820/2606 - loss 0.05737820 - time (sec): 197.70 - samples/sec: 1316.82 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 22:52:51,093 epoch 5 - iter 2080/2606 - loss 0.05740010 - time (sec): 225.01 - samples/sec: 1321.20 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-17 22:53:17,507 epoch 5 - iter 2340/2606 - loss 0.05836892 - time (sec): 251.42 - samples/sec: 1323.52 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 22:53:43,210 epoch 5 - iter 2600/2606 - loss 0.05838649 - time (sec): 277.12 - samples/sec: 1323.20 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-17 22:53:43,761 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 22:53:43,761 EPOCH 5 done: loss 0.0585 - lr: 0.000028
|
146 |
+
2023-10-17 22:53:55,674 DEV : loss 0.27858346700668335 - f1-score (micro avg) 0.4073
|
147 |
+
2023-10-17 22:53:55,737 saving best model
|
148 |
+
2023-10-17 22:53:57,184 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 22:54:24,007 epoch 6 - iter 260/2606 - loss 0.05343449 - time (sec): 26.82 - samples/sec: 1428.06 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 22:54:50,782 epoch 6 - iter 520/2606 - loss 0.05204942 - time (sec): 53.59 - samples/sec: 1383.52 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-17 22:55:17,857 epoch 6 - iter 780/2606 - loss 0.05156502 - time (sec): 80.67 - samples/sec: 1394.32 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 22:55:45,833 epoch 6 - iter 1040/2606 - loss 0.04980644 - time (sec): 108.65 - samples/sec: 1385.34 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-17 22:56:14,864 epoch 6 - iter 1300/2606 - loss 0.04934279 - time (sec): 137.68 - samples/sec: 1352.64 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-17 22:56:42,014 epoch 6 - iter 1560/2606 - loss 0.04831799 - time (sec): 164.83 - samples/sec: 1330.27 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 22:57:08,026 epoch 6 - iter 1820/2606 - loss 0.04711258 - time (sec): 190.84 - samples/sec: 1333.27 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-17 22:57:36,502 epoch 6 - iter 2080/2606 - loss 0.04700619 - time (sec): 219.31 - samples/sec: 1325.55 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 22:58:04,030 epoch 6 - iter 2340/2606 - loss 0.04631173 - time (sec): 246.84 - samples/sec: 1329.18 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-17 22:58:32,499 epoch 6 - iter 2600/2606 - loss 0.04553521 - time (sec): 275.31 - samples/sec: 1331.16 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-17 22:58:33,201 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 22:58:33,202 EPOCH 6 done: loss 0.0455 - lr: 0.000022
|
161 |
+
2023-10-17 22:58:44,947 DEV : loss 0.31613317131996155 - f1-score (micro avg) 0.3619
|
162 |
+
2023-10-17 22:58:45,011 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-17 22:59:13,685 epoch 7 - iter 260/2606 - loss 0.02491344 - time (sec): 28.67 - samples/sec: 1318.70 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-17 22:59:40,721 epoch 7 - iter 520/2606 - loss 0.02684154 - time (sec): 55.71 - samples/sec: 1329.26 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 23:00:09,079 epoch 7 - iter 780/2606 - loss 0.02766037 - time (sec): 84.07 - samples/sec: 1290.18 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-17 23:00:37,772 epoch 7 - iter 1040/2606 - loss 0.02974319 - time (sec): 112.76 - samples/sec: 1279.62 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-17 23:01:06,063 epoch 7 - iter 1300/2606 - loss 0.03074650 - time (sec): 141.05 - samples/sec: 1284.12 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-17 23:01:32,926 epoch 7 - iter 1560/2606 - loss 0.03182663 - time (sec): 167.91 - samples/sec: 1287.99 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-17 23:02:00,232 epoch 7 - iter 1820/2606 - loss 0.03187523 - time (sec): 195.22 - samples/sec: 1297.48 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 23:02:29,230 epoch 7 - iter 2080/2606 - loss 0.03088266 - time (sec): 224.22 - samples/sec: 1318.64 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-17 23:02:55,694 epoch 7 - iter 2340/2606 - loss 0.03076656 - time (sec): 250.68 - samples/sec: 1316.90 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 23:03:23,449 epoch 7 - iter 2600/2606 - loss 0.02992379 - time (sec): 278.44 - samples/sec: 1317.67 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-17 23:03:23,970 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 23:03:23,970 EPOCH 7 done: loss 0.0299 - lr: 0.000017
|
175 |
+
2023-10-17 23:03:35,173 DEV : loss 0.4403761923313141 - f1-score (micro avg) 0.3735
|
176 |
+
2023-10-17 23:03:35,238 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 23:04:03,459 epoch 8 - iter 260/2606 - loss 0.02142000 - time (sec): 28.22 - samples/sec: 1283.04 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 23:04:31,714 epoch 8 - iter 520/2606 - loss 0.01991354 - time (sec): 56.47 - samples/sec: 1294.22 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-17 23:04:58,892 epoch 8 - iter 780/2606 - loss 0.01931704 - time (sec): 83.65 - samples/sec: 1279.97 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-17 23:05:27,331 epoch 8 - iter 1040/2606 - loss 0.02006574 - time (sec): 112.09 - samples/sec: 1275.23 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 23:05:55,670 epoch 8 - iter 1300/2606 - loss 0.02078348 - time (sec): 140.43 - samples/sec: 1274.13 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-17 23:06:24,906 epoch 8 - iter 1560/2606 - loss 0.02167079 - time (sec): 169.67 - samples/sec: 1277.81 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 23:06:53,016 epoch 8 - iter 1820/2606 - loss 0.02190993 - time (sec): 197.78 - samples/sec: 1301.34 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-17 23:07:20,238 epoch 8 - iter 2080/2606 - loss 0.02313931 - time (sec): 225.00 - samples/sec: 1310.25 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 23:07:45,885 epoch 8 - iter 2340/2606 - loss 0.02250970 - time (sec): 250.64 - samples/sec: 1315.03 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-17 23:08:14,890 epoch 8 - iter 2600/2606 - loss 0.02273813 - time (sec): 279.65 - samples/sec: 1311.02 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-17 23:08:15,460 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 23:08:15,460 EPOCH 8 done: loss 0.0227 - lr: 0.000011
|
189 |
+
2023-10-17 23:08:26,347 DEV : loss 0.44188764691352844 - f1-score (micro avg) 0.3802
|
190 |
+
2023-10-17 23:08:26,402 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 23:08:55,086 epoch 9 - iter 260/2606 - loss 0.01290092 - time (sec): 28.68 - samples/sec: 1357.88 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-17 23:09:22,049 epoch 9 - iter 520/2606 - loss 0.01379589 - time (sec): 55.64 - samples/sec: 1348.29 - lr: 0.000010 - momentum: 0.000000
|
193 |
+
2023-10-17 23:09:50,080 epoch 9 - iter 780/2606 - loss 0.01434365 - time (sec): 83.68 - samples/sec: 1312.48 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 23:10:18,063 epoch 9 - iter 1040/2606 - loss 0.01448784 - time (sec): 111.66 - samples/sec: 1292.94 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-17 23:10:45,062 epoch 9 - iter 1300/2606 - loss 0.01451714 - time (sec): 138.66 - samples/sec: 1293.96 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 23:11:13,160 epoch 9 - iter 1560/2606 - loss 0.01441414 - time (sec): 166.75 - samples/sec: 1300.35 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 23:11:40,264 epoch 9 - iter 1820/2606 - loss 0.01475688 - time (sec): 193.86 - samples/sec: 1310.23 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 23:12:08,004 epoch 9 - iter 2080/2606 - loss 0.01490181 - time (sec): 221.60 - samples/sec: 1320.90 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 23:12:36,041 epoch 9 - iter 2340/2606 - loss 0.01479776 - time (sec): 249.64 - samples/sec: 1321.83 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 23:13:05,286 epoch 9 - iter 2600/2606 - loss 0.01511359 - time (sec): 278.88 - samples/sec: 1314.75 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 23:13:05,943 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 23:13:05,944 EPOCH 9 done: loss 0.0151 - lr: 0.000006
|
203 |
+
2023-10-17 23:13:18,078 DEV : loss 0.4638948440551758 - f1-score (micro avg) 0.4106
|
204 |
+
2023-10-17 23:13:18,144 saving best model
|
205 |
+
2023-10-17 23:13:19,694 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-17 23:13:50,439 epoch 10 - iter 260/2606 - loss 0.00890757 - time (sec): 30.74 - samples/sec: 1219.33 - lr: 0.000005 - momentum: 0.000000
|
207 |
+
2023-10-17 23:14:18,832 epoch 10 - iter 520/2606 - loss 0.00864088 - time (sec): 59.14 - samples/sec: 1260.06 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-17 23:14:47,585 epoch 10 - iter 780/2606 - loss 0.01049821 - time (sec): 87.89 - samples/sec: 1243.94 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-17 23:15:14,969 epoch 10 - iter 1040/2606 - loss 0.01013399 - time (sec): 115.27 - samples/sec: 1247.17 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 23:15:42,175 epoch 10 - iter 1300/2606 - loss 0.00906366 - time (sec): 142.48 - samples/sec: 1286.90 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 23:16:09,614 epoch 10 - iter 1560/2606 - loss 0.00909100 - time (sec): 169.92 - samples/sec: 1297.96 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 23:16:39,396 epoch 10 - iter 1820/2606 - loss 0.00925267 - time (sec): 199.70 - samples/sec: 1299.91 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 23:17:07,503 epoch 10 - iter 2080/2606 - loss 0.00919351 - time (sec): 227.81 - samples/sec: 1297.14 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 23:17:33,875 epoch 10 - iter 2340/2606 - loss 0.00928314 - time (sec): 254.18 - samples/sec: 1298.02 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 23:17:59,956 epoch 10 - iter 2600/2606 - loss 0.00932223 - time (sec): 280.26 - samples/sec: 1308.39 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 23:18:00,484 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 23:18:00,484 EPOCH 10 done: loss 0.0093 - lr: 0.000000
|
218 |
+
2023-10-17 23:18:12,656 DEV : loss 0.48719704151153564 - f1-score (micro avg) 0.3936
|
219 |
+
2023-10-17 23:18:13,293 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-17 23:18:13,295 Loading model from best epoch ...
|
221 |
+
2023-10-17 23:18:15,665 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
222 |
+
2023-10-17 23:18:34,724
|
223 |
+
Results:
|
224 |
+
- F-score (micro) 0.4853
|
225 |
+
- F-score (macro) 0.3233
|
226 |
+
- Accuracy 0.3255
|
227 |
+
|
228 |
+
By class:
|
229 |
+
precision recall f1-score support
|
230 |
+
|
231 |
+
LOC 0.5263 0.6343 0.5753 1214
|
232 |
+
PER 0.3903 0.5087 0.4417 808
|
233 |
+
ORG 0.2745 0.2776 0.2761 353
|
234 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
235 |
+
|
236 |
+
micro avg 0.4439 0.5351 0.4853 2390
|
237 |
+
macro avg 0.2978 0.3551 0.3233 2390
|
238 |
+
weighted avg 0.4398 0.5351 0.4823 2390
|
239 |
+
|
240 |
+
2023-10-17 23:18:34,724 ----------------------------------------------------------------------------------------------------
|