stefan-it's picture
Upload folder using huggingface_hub
a869e98
2023-10-17 20:08:58,049 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): ElectraModel(
(embeddings): ElectraEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): ElectraEncoder(
(layer): ModuleList(
(0-11): 12 x ElectraLayer(
(attention): ElectraAttention(
(self): ElectraSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): ElectraSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): ElectraIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ElectraOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 MultiCorpus: 1085 train + 148 dev + 364 test sentences
- NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Train: 1085 sentences
2023-10-17 20:08:58,050 (train_with_dev=False, train_with_test=False)
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Training Params:
2023-10-17 20:08:58,050 - learning_rate: "5e-05"
2023-10-17 20:08:58,050 - mini_batch_size: "4"
2023-10-17 20:08:58,050 - max_epochs: "10"
2023-10-17 20:08:58,050 - shuffle: "True"
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Plugins:
2023-10-17 20:08:58,050 - TensorboardLogger
2023-10-17 20:08:58,050 - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 20:08:58,050 - metric: "('micro avg', 'f1-score')"
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,050 Computation:
2023-10-17 20:08:58,050 - compute on device: cuda:0
2023-10-17 20:08:58,050 - embedding storage: none
2023-10-17 20:08:58,050 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,051 Model training base path: "hmbench-newseye/sv-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-17 20:08:58,051 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,051 ----------------------------------------------------------------------------------------------------
2023-10-17 20:08:58,051 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 20:08:59,690 epoch 1 - iter 27/272 - loss 3.36464584 - time (sec): 1.64 - samples/sec: 3365.74 - lr: 0.000005 - momentum: 0.000000
2023-10-17 20:09:01,419 epoch 1 - iter 54/272 - loss 2.61595255 - time (sec): 3.37 - samples/sec: 3463.47 - lr: 0.000010 - momentum: 0.000000
2023-10-17 20:09:03,073 epoch 1 - iter 81/272 - loss 1.95888601 - time (sec): 5.02 - samples/sec: 3391.46 - lr: 0.000015 - momentum: 0.000000
2023-10-17 20:09:04,703 epoch 1 - iter 108/272 - loss 1.63527716 - time (sec): 6.65 - samples/sec: 3324.49 - lr: 0.000020 - momentum: 0.000000
2023-10-17 20:09:06,324 epoch 1 - iter 135/272 - loss 1.40247920 - time (sec): 8.27 - samples/sec: 3279.12 - lr: 0.000025 - momentum: 0.000000
2023-10-17 20:09:07,837 epoch 1 - iter 162/272 - loss 1.24766159 - time (sec): 9.79 - samples/sec: 3203.87 - lr: 0.000030 - momentum: 0.000000
2023-10-17 20:09:09,325 epoch 1 - iter 189/272 - loss 1.11908011 - time (sec): 11.27 - samples/sec: 3213.03 - lr: 0.000035 - momentum: 0.000000
2023-10-17 20:09:10,977 epoch 1 - iter 216/272 - loss 0.97436126 - time (sec): 12.93 - samples/sec: 3284.80 - lr: 0.000040 - momentum: 0.000000
2023-10-17 20:09:12,421 epoch 1 - iter 243/272 - loss 0.90626581 - time (sec): 14.37 - samples/sec: 3260.16 - lr: 0.000044 - momentum: 0.000000
2023-10-17 20:09:13,956 epoch 1 - iter 270/272 - loss 0.83943344 - time (sec): 15.90 - samples/sec: 3255.35 - lr: 0.000049 - momentum: 0.000000
2023-10-17 20:09:14,057 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:14,057 EPOCH 1 done: loss 0.8379 - lr: 0.000049
2023-10-17 20:09:15,186 DEV : loss 0.13628603518009186 - f1-score (micro avg) 0.6761
2023-10-17 20:09:15,190 saving best model
2023-10-17 20:09:15,566 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:17,030 epoch 2 - iter 27/272 - loss 0.18530521 - time (sec): 1.46 - samples/sec: 3299.00 - lr: 0.000049 - momentum: 0.000000
2023-10-17 20:09:18,617 epoch 2 - iter 54/272 - loss 0.22313282 - time (sec): 3.05 - samples/sec: 3322.10 - lr: 0.000049 - momentum: 0.000000
2023-10-17 20:09:20,139 epoch 2 - iter 81/272 - loss 0.19202817 - time (sec): 4.57 - samples/sec: 3313.78 - lr: 0.000048 - momentum: 0.000000
2023-10-17 20:09:21,803 epoch 2 - iter 108/272 - loss 0.17147208 - time (sec): 6.24 - samples/sec: 3183.13 - lr: 0.000048 - momentum: 0.000000
2023-10-17 20:09:23,468 epoch 2 - iter 135/272 - loss 0.16183630 - time (sec): 7.90 - samples/sec: 3251.91 - lr: 0.000047 - momentum: 0.000000
2023-10-17 20:09:25,031 epoch 2 - iter 162/272 - loss 0.15586281 - time (sec): 9.46 - samples/sec: 3216.56 - lr: 0.000047 - momentum: 0.000000
2023-10-17 20:09:26,596 epoch 2 - iter 189/272 - loss 0.14885775 - time (sec): 11.03 - samples/sec: 3216.98 - lr: 0.000046 - momentum: 0.000000
2023-10-17 20:09:28,246 epoch 2 - iter 216/272 - loss 0.14799766 - time (sec): 12.68 - samples/sec: 3269.07 - lr: 0.000046 - momentum: 0.000000
2023-10-17 20:09:29,853 epoch 2 - iter 243/272 - loss 0.14386111 - time (sec): 14.29 - samples/sec: 3280.38 - lr: 0.000045 - momentum: 0.000000
2023-10-17 20:09:31,438 epoch 2 - iter 270/272 - loss 0.13889560 - time (sec): 15.87 - samples/sec: 3253.07 - lr: 0.000045 - momentum: 0.000000
2023-10-17 20:09:31,579 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:31,579 EPOCH 2 done: loss 0.1379 - lr: 0.000045
2023-10-17 20:09:33,063 DEV : loss 0.09656020253896713 - f1-score (micro avg) 0.7568
2023-10-17 20:09:33,069 saving best model
2023-10-17 20:09:33,549 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:35,102 epoch 3 - iter 27/272 - loss 0.08143101 - time (sec): 1.55 - samples/sec: 3206.66 - lr: 0.000044 - momentum: 0.000000
2023-10-17 20:09:36,499 epoch 3 - iter 54/272 - loss 0.08721599 - time (sec): 2.94 - samples/sec: 3137.14 - lr: 0.000043 - momentum: 0.000000
2023-10-17 20:09:38,090 epoch 3 - iter 81/272 - loss 0.10064725 - time (sec): 4.53 - samples/sec: 3203.43 - lr: 0.000043 - momentum: 0.000000
2023-10-17 20:09:39,623 epoch 3 - iter 108/272 - loss 0.08740114 - time (sec): 6.07 - samples/sec: 3267.36 - lr: 0.000042 - momentum: 0.000000
2023-10-17 20:09:41,190 epoch 3 - iter 135/272 - loss 0.08333219 - time (sec): 7.63 - samples/sec: 3287.83 - lr: 0.000042 - momentum: 0.000000
2023-10-17 20:09:42,776 epoch 3 - iter 162/272 - loss 0.08611077 - time (sec): 9.22 - samples/sec: 3277.71 - lr: 0.000041 - momentum: 0.000000
2023-10-17 20:09:44,312 epoch 3 - iter 189/272 - loss 0.09438552 - time (sec): 10.76 - samples/sec: 3228.93 - lr: 0.000041 - momentum: 0.000000
2023-10-17 20:09:46,017 epoch 3 - iter 216/272 - loss 0.09169296 - time (sec): 12.46 - samples/sec: 3239.19 - lr: 0.000040 - momentum: 0.000000
2023-10-17 20:09:47,523 epoch 3 - iter 243/272 - loss 0.09211531 - time (sec): 13.97 - samples/sec: 3251.97 - lr: 0.000040 - momentum: 0.000000
2023-10-17 20:09:49,243 epoch 3 - iter 270/272 - loss 0.09033732 - time (sec): 15.69 - samples/sec: 3288.37 - lr: 0.000039 - momentum: 0.000000
2023-10-17 20:09:49,374 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:49,374 EPOCH 3 done: loss 0.0903 - lr: 0.000039
2023-10-17 20:09:50,835 DEV : loss 0.1402185708284378 - f1-score (micro avg) 0.8037
2023-10-17 20:09:50,840 saving best model
2023-10-17 20:09:51,303 ----------------------------------------------------------------------------------------------------
2023-10-17 20:09:52,787 epoch 4 - iter 27/272 - loss 0.03350101 - time (sec): 1.48 - samples/sec: 2905.43 - lr: 0.000038 - momentum: 0.000000
2023-10-17 20:09:54,363 epoch 4 - iter 54/272 - loss 0.04361525 - time (sec): 3.06 - samples/sec: 3126.00 - lr: 0.000038 - momentum: 0.000000
2023-10-17 20:09:55,995 epoch 4 - iter 81/272 - loss 0.04585125 - time (sec): 4.69 - samples/sec: 3067.31 - lr: 0.000037 - momentum: 0.000000
2023-10-17 20:09:57,645 epoch 4 - iter 108/272 - loss 0.05242094 - time (sec): 6.34 - samples/sec: 3084.77 - lr: 0.000037 - momentum: 0.000000
2023-10-17 20:09:59,177 epoch 4 - iter 135/272 - loss 0.04837595 - time (sec): 7.87 - samples/sec: 3158.44 - lr: 0.000036 - momentum: 0.000000
2023-10-17 20:10:00,892 epoch 4 - iter 162/272 - loss 0.05957811 - time (sec): 9.59 - samples/sec: 3182.84 - lr: 0.000036 - momentum: 0.000000
2023-10-17 20:10:02,471 epoch 4 - iter 189/272 - loss 0.06049789 - time (sec): 11.17 - samples/sec: 3189.41 - lr: 0.000035 - momentum: 0.000000
2023-10-17 20:10:04,095 epoch 4 - iter 216/272 - loss 0.05601630 - time (sec): 12.79 - samples/sec: 3204.40 - lr: 0.000034 - momentum: 0.000000
2023-10-17 20:10:05,705 epoch 4 - iter 243/272 - loss 0.05920188 - time (sec): 14.40 - samples/sec: 3254.20 - lr: 0.000034 - momentum: 0.000000
2023-10-17 20:10:07,220 epoch 4 - iter 270/272 - loss 0.05626618 - time (sec): 15.91 - samples/sec: 3247.34 - lr: 0.000033 - momentum: 0.000000
2023-10-17 20:10:07,353 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:07,353 EPOCH 4 done: loss 0.0559 - lr: 0.000033
2023-10-17 20:10:08,860 DEV : loss 0.12993647158145905 - f1-score (micro avg) 0.7764
2023-10-17 20:10:08,865 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:10,472 epoch 5 - iter 27/272 - loss 0.03478292 - time (sec): 1.61 - samples/sec: 3520.10 - lr: 0.000033 - momentum: 0.000000
2023-10-17 20:10:11,897 epoch 5 - iter 54/272 - loss 0.02706579 - time (sec): 3.03 - samples/sec: 3367.24 - lr: 0.000032 - momentum: 0.000000
2023-10-17 20:10:13,415 epoch 5 - iter 81/272 - loss 0.02798956 - time (sec): 4.55 - samples/sec: 3180.58 - lr: 0.000032 - momentum: 0.000000
2023-10-17 20:10:15,001 epoch 5 - iter 108/272 - loss 0.03053647 - time (sec): 6.13 - samples/sec: 3282.15 - lr: 0.000031 - momentum: 0.000000
2023-10-17 20:10:16,959 epoch 5 - iter 135/272 - loss 0.02892008 - time (sec): 8.09 - samples/sec: 3216.38 - lr: 0.000031 - momentum: 0.000000
2023-10-17 20:10:18,617 epoch 5 - iter 162/272 - loss 0.02651766 - time (sec): 9.75 - samples/sec: 3251.68 - lr: 0.000030 - momentum: 0.000000
2023-10-17 20:10:20,088 epoch 5 - iter 189/272 - loss 0.03505289 - time (sec): 11.22 - samples/sec: 3225.98 - lr: 0.000029 - momentum: 0.000000
2023-10-17 20:10:21,653 epoch 5 - iter 216/272 - loss 0.03419520 - time (sec): 12.79 - samples/sec: 3246.17 - lr: 0.000029 - momentum: 0.000000
2023-10-17 20:10:23,263 epoch 5 - iter 243/272 - loss 0.03527206 - time (sec): 14.40 - samples/sec: 3243.33 - lr: 0.000028 - momentum: 0.000000
2023-10-17 20:10:24,803 epoch 5 - iter 270/272 - loss 0.03558909 - time (sec): 15.94 - samples/sec: 3242.08 - lr: 0.000028 - momentum: 0.000000
2023-10-17 20:10:24,892 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:24,892 EPOCH 5 done: loss 0.0355 - lr: 0.000028
2023-10-17 20:10:26,382 DEV : loss 0.136720672249794 - f1-score (micro avg) 0.7993
2023-10-17 20:10:26,387 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:28,006 epoch 6 - iter 27/272 - loss 0.02355395 - time (sec): 1.62 - samples/sec: 3230.24 - lr: 0.000027 - momentum: 0.000000
2023-10-17 20:10:29,528 epoch 6 - iter 54/272 - loss 0.02468085 - time (sec): 3.14 - samples/sec: 3305.14 - lr: 0.000027 - momentum: 0.000000
2023-10-17 20:10:30,968 epoch 6 - iter 81/272 - loss 0.03144277 - time (sec): 4.58 - samples/sec: 3281.17 - lr: 0.000026 - momentum: 0.000000
2023-10-17 20:10:32,450 epoch 6 - iter 108/272 - loss 0.02540633 - time (sec): 6.06 - samples/sec: 3286.01 - lr: 0.000026 - momentum: 0.000000
2023-10-17 20:10:34,164 epoch 6 - iter 135/272 - loss 0.02367505 - time (sec): 7.78 - samples/sec: 3307.08 - lr: 0.000025 - momentum: 0.000000
2023-10-17 20:10:35,616 epoch 6 - iter 162/272 - loss 0.02246197 - time (sec): 9.23 - samples/sec: 3259.57 - lr: 0.000024 - momentum: 0.000000
2023-10-17 20:10:37,137 epoch 6 - iter 189/272 - loss 0.02522335 - time (sec): 10.75 - samples/sec: 3246.53 - lr: 0.000024 - momentum: 0.000000
2023-10-17 20:10:38,586 epoch 6 - iter 216/272 - loss 0.02532442 - time (sec): 12.20 - samples/sec: 3228.14 - lr: 0.000023 - momentum: 0.000000
2023-10-17 20:10:40,398 epoch 6 - iter 243/272 - loss 0.02338905 - time (sec): 14.01 - samples/sec: 3288.59 - lr: 0.000023 - momentum: 0.000000
2023-10-17 20:10:42,014 epoch 6 - iter 270/272 - loss 0.02383395 - time (sec): 15.63 - samples/sec: 3316.69 - lr: 0.000022 - momentum: 0.000000
2023-10-17 20:10:42,097 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:42,097 EPOCH 6 done: loss 0.0238 - lr: 0.000022
2023-10-17 20:10:43,661 DEV : loss 0.17291073501110077 - f1-score (micro avg) 0.8148
2023-10-17 20:10:43,668 saving best model
2023-10-17 20:10:44,141 ----------------------------------------------------------------------------------------------------
2023-10-17 20:10:45,812 epoch 7 - iter 27/272 - loss 0.01466535 - time (sec): 1.67 - samples/sec: 3282.96 - lr: 0.000022 - momentum: 0.000000
2023-10-17 20:10:47,415 epoch 7 - iter 54/272 - loss 0.01384818 - time (sec): 3.27 - samples/sec: 3190.91 - lr: 0.000021 - momentum: 0.000000
2023-10-17 20:10:48,915 epoch 7 - iter 81/272 - loss 0.01364182 - time (sec): 4.77 - samples/sec: 3181.97 - lr: 0.000021 - momentum: 0.000000
2023-10-17 20:10:50,493 epoch 7 - iter 108/272 - loss 0.01625888 - time (sec): 6.35 - samples/sec: 3245.07 - lr: 0.000020 - momentum: 0.000000
2023-10-17 20:10:52,201 epoch 7 - iter 135/272 - loss 0.01518591 - time (sec): 8.06 - samples/sec: 3248.37 - lr: 0.000019 - momentum: 0.000000
2023-10-17 20:10:53,716 epoch 7 - iter 162/272 - loss 0.01649649 - time (sec): 9.57 - samples/sec: 3239.36 - lr: 0.000019 - momentum: 0.000000
2023-10-17 20:10:55,328 epoch 7 - iter 189/272 - loss 0.01508126 - time (sec): 11.19 - samples/sec: 3248.95 - lr: 0.000018 - momentum: 0.000000
2023-10-17 20:10:56,849 epoch 7 - iter 216/272 - loss 0.01466722 - time (sec): 12.71 - samples/sec: 3209.15 - lr: 0.000018 - momentum: 0.000000
2023-10-17 20:10:58,355 epoch 7 - iter 243/272 - loss 0.01386952 - time (sec): 14.21 - samples/sec: 3239.70 - lr: 0.000017 - momentum: 0.000000
2023-10-17 20:10:59,915 epoch 7 - iter 270/272 - loss 0.01470419 - time (sec): 15.77 - samples/sec: 3271.80 - lr: 0.000017 - momentum: 0.000000
2023-10-17 20:11:00,019 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:00,020 EPOCH 7 done: loss 0.0146 - lr: 0.000017
2023-10-17 20:11:01,497 DEV : loss 0.16411031782627106 - f1-score (micro avg) 0.8
2023-10-17 20:11:01,501 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:03,057 epoch 8 - iter 27/272 - loss 0.00697671 - time (sec): 1.55 - samples/sec: 3181.98 - lr: 0.000016 - momentum: 0.000000
2023-10-17 20:11:04,691 epoch 8 - iter 54/272 - loss 0.01218680 - time (sec): 3.19 - samples/sec: 3242.34 - lr: 0.000016 - momentum: 0.000000
2023-10-17 20:11:06,212 epoch 8 - iter 81/272 - loss 0.01160361 - time (sec): 4.71 - samples/sec: 3285.46 - lr: 0.000015 - momentum: 0.000000
2023-10-17 20:11:07,797 epoch 8 - iter 108/272 - loss 0.01003810 - time (sec): 6.29 - samples/sec: 3276.76 - lr: 0.000014 - momentum: 0.000000
2023-10-17 20:11:09,511 epoch 8 - iter 135/272 - loss 0.01334468 - time (sec): 8.01 - samples/sec: 3280.99 - lr: 0.000014 - momentum: 0.000000
2023-10-17 20:11:11,084 epoch 8 - iter 162/272 - loss 0.01311487 - time (sec): 9.58 - samples/sec: 3242.08 - lr: 0.000013 - momentum: 0.000000
2023-10-17 20:11:12,690 epoch 8 - iter 189/272 - loss 0.01245178 - time (sec): 11.19 - samples/sec: 3292.10 - lr: 0.000013 - momentum: 0.000000
2023-10-17 20:11:14,249 epoch 8 - iter 216/272 - loss 0.01433968 - time (sec): 12.75 - samples/sec: 3265.29 - lr: 0.000012 - momentum: 0.000000
2023-10-17 20:11:15,689 epoch 8 - iter 243/272 - loss 0.01354159 - time (sec): 14.19 - samples/sec: 3276.62 - lr: 0.000012 - momentum: 0.000000
2023-10-17 20:11:17,283 epoch 8 - iter 270/272 - loss 0.01280139 - time (sec): 15.78 - samples/sec: 3281.26 - lr: 0.000011 - momentum: 0.000000
2023-10-17 20:11:17,382 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:17,382 EPOCH 8 done: loss 0.0128 - lr: 0.000011
2023-10-17 20:11:18,870 DEV : loss 0.16361746191978455 - f1-score (micro avg) 0.822
2023-10-17 20:11:18,875 saving best model
2023-10-17 20:11:19,354 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:21,085 epoch 9 - iter 27/272 - loss 0.00469121 - time (sec): 1.73 - samples/sec: 2992.63 - lr: 0.000011 - momentum: 0.000000
2023-10-17 20:11:22,734 epoch 9 - iter 54/272 - loss 0.00351451 - time (sec): 3.38 - samples/sec: 3100.53 - lr: 0.000010 - momentum: 0.000000
2023-10-17 20:11:24,509 epoch 9 - iter 81/272 - loss 0.00808982 - time (sec): 5.15 - samples/sec: 3034.33 - lr: 0.000009 - momentum: 0.000000
2023-10-17 20:11:25,936 epoch 9 - iter 108/272 - loss 0.00708092 - time (sec): 6.58 - samples/sec: 2983.60 - lr: 0.000009 - momentum: 0.000000
2023-10-17 20:11:27,522 epoch 9 - iter 135/272 - loss 0.00600108 - time (sec): 8.17 - samples/sec: 3035.43 - lr: 0.000008 - momentum: 0.000000
2023-10-17 20:11:29,194 epoch 9 - iter 162/272 - loss 0.00553079 - time (sec): 9.84 - samples/sec: 3023.78 - lr: 0.000008 - momentum: 0.000000
2023-10-17 20:11:30,953 epoch 9 - iter 189/272 - loss 0.00725806 - time (sec): 11.60 - samples/sec: 3050.45 - lr: 0.000007 - momentum: 0.000000
2023-10-17 20:11:32,445 epoch 9 - iter 216/272 - loss 0.00887487 - time (sec): 13.09 - samples/sec: 3069.42 - lr: 0.000007 - momentum: 0.000000
2023-10-17 20:11:34,186 epoch 9 - iter 243/272 - loss 0.00894166 - time (sec): 14.83 - samples/sec: 3124.23 - lr: 0.000006 - momentum: 0.000000
2023-10-17 20:11:35,757 epoch 9 - iter 270/272 - loss 0.00811046 - time (sec): 16.40 - samples/sec: 3158.99 - lr: 0.000006 - momentum: 0.000000
2023-10-17 20:11:35,851 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:35,851 EPOCH 9 done: loss 0.0081 - lr: 0.000006
2023-10-17 20:11:37,339 DEV : loss 0.16167020797729492 - f1-score (micro avg) 0.8352
2023-10-17 20:11:37,344 saving best model
2023-10-17 20:11:37,839 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:39,378 epoch 10 - iter 27/272 - loss 0.01637510 - time (sec): 1.54 - samples/sec: 2953.62 - lr: 0.000005 - momentum: 0.000000
2023-10-17 20:11:40,845 epoch 10 - iter 54/272 - loss 0.01175067 - time (sec): 3.00 - samples/sec: 2932.84 - lr: 0.000004 - momentum: 0.000000
2023-10-17 20:11:42,291 epoch 10 - iter 81/272 - loss 0.00774745 - time (sec): 4.45 - samples/sec: 3017.02 - lr: 0.000004 - momentum: 0.000000
2023-10-17 20:11:43,912 epoch 10 - iter 108/272 - loss 0.00814612 - time (sec): 6.07 - samples/sec: 3119.22 - lr: 0.000003 - momentum: 0.000000
2023-10-17 20:11:45,416 epoch 10 - iter 135/272 - loss 0.00670909 - time (sec): 7.57 - samples/sec: 3130.98 - lr: 0.000003 - momentum: 0.000000
2023-10-17 20:11:47,004 epoch 10 - iter 162/272 - loss 0.00603799 - time (sec): 9.16 - samples/sec: 3210.96 - lr: 0.000002 - momentum: 0.000000
2023-10-17 20:11:48,623 epoch 10 - iter 189/272 - loss 0.00595688 - time (sec): 10.78 - samples/sec: 3241.35 - lr: 0.000002 - momentum: 0.000000
2023-10-17 20:11:50,195 epoch 10 - iter 216/272 - loss 0.00624265 - time (sec): 12.35 - samples/sec: 3247.62 - lr: 0.000001 - momentum: 0.000000
2023-10-17 20:11:51,948 epoch 10 - iter 243/272 - loss 0.00609270 - time (sec): 14.11 - samples/sec: 3290.21 - lr: 0.000001 - momentum: 0.000000
2023-10-17 20:11:53,598 epoch 10 - iter 270/272 - loss 0.00548331 - time (sec): 15.76 - samples/sec: 3285.22 - lr: 0.000000 - momentum: 0.000000
2023-10-17 20:11:53,688 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:53,688 EPOCH 10 done: loss 0.0055 - lr: 0.000000
2023-10-17 20:11:55,237 DEV : loss 0.16244861483573914 - f1-score (micro avg) 0.8253
2023-10-17 20:11:55,688 ----------------------------------------------------------------------------------------------------
2023-10-17 20:11:55,689 Loading model from best epoch ...
2023-10-17 20:11:57,273 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-17 20:11:59,397
Results:
- F-score (micro) 0.7971
- F-score (macro) 0.7775
- Accuracy 0.6763
By class:
precision recall f1-score support
LOC 0.8442 0.8333 0.8387 312
PER 0.6962 0.8702 0.7735 208
ORG 0.6667 0.5455 0.6000 55
HumanProd 0.8148 1.0000 0.8980 22
micro avg 0.7703 0.8258 0.7971 597
macro avg 0.7554 0.8122 0.7775 597
weighted avg 0.7752 0.8258 0.7962 597
2023-10-17 20:11:59,397 ----------------------------------------------------------------------------------------------------