stefan-it's picture
Upload folder using huggingface_hub
62f372b
2023-10-17 20:42:20,536 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): ElectraModel(
(embeddings): ElectraEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): ElectraEncoder(
(layer): ModuleList(
(0-11): 12 x ElectraLayer(
(attention): ElectraAttention(
(self): ElectraSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): ElectraSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): ElectraIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ElectraOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 MultiCorpus: 1085 train + 148 dev + 364 test sentences
- NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Train: 1085 sentences
2023-10-17 20:42:20,537 (train_with_dev=False, train_with_test=False)
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Training Params:
2023-10-17 20:42:20,537 - learning_rate: "5e-05"
2023-10-17 20:42:20,537 - mini_batch_size: "8"
2023-10-17 20:42:20,537 - max_epochs: "10"
2023-10-17 20:42:20,537 - shuffle: "True"
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Plugins:
2023-10-17 20:42:20,537 - TensorboardLogger
2023-10-17 20:42:20,537 - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 20:42:20,537 - metric: "('micro avg', 'f1-score')"
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,537 Computation:
2023-10-17 20:42:20,537 - compute on device: cuda:0
2023-10-17 20:42:20,537 - embedding storage: none
2023-10-17 20:42:20,537 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,538 Model training base path: "hmbench-newseye/sv-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-17 20:42:20,538 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,538 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:20,538 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 20:42:21,708 epoch 1 - iter 13/136 - loss 3.61948799 - time (sec): 1.17 - samples/sec: 4249.82 - lr: 0.000004 - momentum: 0.000000
2023-10-17 20:42:23,195 epoch 1 - iter 26/136 - loss 3.13237506 - time (sec): 2.66 - samples/sec: 3779.78 - lr: 0.000009 - momentum: 0.000000
2023-10-17 20:42:24,833 epoch 1 - iter 39/136 - loss 2.34189086 - time (sec): 4.29 - samples/sec: 3817.99 - lr: 0.000014 - momentum: 0.000000
2023-10-17 20:42:26,155 epoch 1 - iter 52/136 - loss 1.92616474 - time (sec): 5.62 - samples/sec: 3869.56 - lr: 0.000019 - momentum: 0.000000
2023-10-17 20:42:27,501 epoch 1 - iter 65/136 - loss 1.70538327 - time (sec): 6.96 - samples/sec: 3747.85 - lr: 0.000024 - momentum: 0.000000
2023-10-17 20:42:28,954 epoch 1 - iter 78/136 - loss 1.51058071 - time (sec): 8.42 - samples/sec: 3664.50 - lr: 0.000028 - momentum: 0.000000
2023-10-17 20:42:30,242 epoch 1 - iter 91/136 - loss 1.36273296 - time (sec): 9.70 - samples/sec: 3634.79 - lr: 0.000033 - momentum: 0.000000
2023-10-17 20:42:31,421 epoch 1 - iter 104/136 - loss 1.23429361 - time (sec): 10.88 - samples/sec: 3663.48 - lr: 0.000038 - momentum: 0.000000
2023-10-17 20:42:32,684 epoch 1 - iter 117/136 - loss 1.12489260 - time (sec): 12.15 - samples/sec: 3684.80 - lr: 0.000043 - momentum: 0.000000
2023-10-17 20:42:34,173 epoch 1 - iter 130/136 - loss 1.01914801 - time (sec): 13.63 - samples/sec: 3691.10 - lr: 0.000047 - momentum: 0.000000
2023-10-17 20:42:34,636 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:34,636 EPOCH 1 done: loss 0.9934 - lr: 0.000047
2023-10-17 20:42:35,690 DEV : loss 0.17961926758289337 - f1-score (micro avg) 0.5662
2023-10-17 20:42:35,695 saving best model
2023-10-17 20:42:36,051 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:37,254 epoch 2 - iter 13/136 - loss 0.15228697 - time (sec): 1.20 - samples/sec: 3859.37 - lr: 0.000050 - momentum: 0.000000
2023-10-17 20:42:38,649 epoch 2 - iter 26/136 - loss 0.16566093 - time (sec): 2.60 - samples/sec: 3461.64 - lr: 0.000049 - momentum: 0.000000
2023-10-17 20:42:40,011 epoch 2 - iter 39/136 - loss 0.17398233 - time (sec): 3.96 - samples/sec: 3553.30 - lr: 0.000048 - momentum: 0.000000
2023-10-17 20:42:41,406 epoch 2 - iter 52/136 - loss 0.16043159 - time (sec): 5.35 - samples/sec: 3638.07 - lr: 0.000048 - momentum: 0.000000
2023-10-17 20:42:42,617 epoch 2 - iter 65/136 - loss 0.15531100 - time (sec): 6.56 - samples/sec: 3667.80 - lr: 0.000047 - momentum: 0.000000
2023-10-17 20:42:44,001 epoch 2 - iter 78/136 - loss 0.14560993 - time (sec): 7.95 - samples/sec: 3688.02 - lr: 0.000047 - momentum: 0.000000
2023-10-17 20:42:45,411 epoch 2 - iter 91/136 - loss 0.15781392 - time (sec): 9.36 - samples/sec: 3668.01 - lr: 0.000046 - momentum: 0.000000
2023-10-17 20:42:46,561 epoch 2 - iter 104/136 - loss 0.15797681 - time (sec): 10.51 - samples/sec: 3665.01 - lr: 0.000046 - momentum: 0.000000
2023-10-17 20:42:48,140 epoch 2 - iter 117/136 - loss 0.15530704 - time (sec): 12.09 - samples/sec: 3654.54 - lr: 0.000045 - momentum: 0.000000
2023-10-17 20:42:49,877 epoch 2 - iter 130/136 - loss 0.15218247 - time (sec): 13.82 - samples/sec: 3627.87 - lr: 0.000045 - momentum: 0.000000
2023-10-17 20:42:50,416 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:50,416 EPOCH 2 done: loss 0.1500 - lr: 0.000045
2023-10-17 20:42:51,874 DEV : loss 0.11248722672462463 - f1-score (micro avg) 0.7532
2023-10-17 20:42:51,879 saving best model
2023-10-17 20:42:52,359 ----------------------------------------------------------------------------------------------------
2023-10-17 20:42:53,518 epoch 3 - iter 13/136 - loss 0.10254776 - time (sec): 1.16 - samples/sec: 3639.39 - lr: 0.000044 - momentum: 0.000000
2023-10-17 20:42:54,973 epoch 3 - iter 26/136 - loss 0.08535292 - time (sec): 2.61 - samples/sec: 3632.11 - lr: 0.000043 - momentum: 0.000000
2023-10-17 20:42:56,426 epoch 3 - iter 39/136 - loss 0.08605534 - time (sec): 4.07 - samples/sec: 3592.38 - lr: 0.000043 - momentum: 0.000000
2023-10-17 20:42:57,652 epoch 3 - iter 52/136 - loss 0.08805134 - time (sec): 5.29 - samples/sec: 3651.61 - lr: 0.000042 - momentum: 0.000000
2023-10-17 20:42:59,085 epoch 3 - iter 65/136 - loss 0.09492906 - time (sec): 6.72 - samples/sec: 3646.33 - lr: 0.000042 - momentum: 0.000000
2023-10-17 20:43:00,479 epoch 3 - iter 78/136 - loss 0.09268581 - time (sec): 8.12 - samples/sec: 3714.31 - lr: 0.000041 - momentum: 0.000000
2023-10-17 20:43:01,836 epoch 3 - iter 91/136 - loss 0.09202451 - time (sec): 9.48 - samples/sec: 3675.97 - lr: 0.000041 - momentum: 0.000000
2023-10-17 20:43:03,179 epoch 3 - iter 104/136 - loss 0.08747935 - time (sec): 10.82 - samples/sec: 3663.44 - lr: 0.000040 - momentum: 0.000000
2023-10-17 20:43:04,878 epoch 3 - iter 117/136 - loss 0.08598807 - time (sec): 12.52 - samples/sec: 3638.22 - lr: 0.000040 - momentum: 0.000000
2023-10-17 20:43:06,097 epoch 3 - iter 130/136 - loss 0.08406916 - time (sec): 13.74 - samples/sec: 3649.73 - lr: 0.000039 - momentum: 0.000000
2023-10-17 20:43:06,660 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:06,660 EPOCH 3 done: loss 0.0864 - lr: 0.000039
2023-10-17 20:43:08,273 DEV : loss 0.10026960074901581 - f1-score (micro avg) 0.776
2023-10-17 20:43:08,278 saving best model
2023-10-17 20:43:08,718 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:10,225 epoch 4 - iter 13/136 - loss 0.04229442 - time (sec): 1.51 - samples/sec: 3161.21 - lr: 0.000038 - momentum: 0.000000
2023-10-17 20:43:11,715 epoch 4 - iter 26/136 - loss 0.05020601 - time (sec): 3.00 - samples/sec: 3249.66 - lr: 0.000038 - momentum: 0.000000
2023-10-17 20:43:13,276 epoch 4 - iter 39/136 - loss 0.04768072 - time (sec): 4.56 - samples/sec: 3218.31 - lr: 0.000037 - momentum: 0.000000
2023-10-17 20:43:14,752 epoch 4 - iter 52/136 - loss 0.04433361 - time (sec): 6.03 - samples/sec: 3268.99 - lr: 0.000037 - momentum: 0.000000
2023-10-17 20:43:16,373 epoch 4 - iter 65/136 - loss 0.04410039 - time (sec): 7.65 - samples/sec: 3356.66 - lr: 0.000036 - momentum: 0.000000
2023-10-17 20:43:17,660 epoch 4 - iter 78/136 - loss 0.04603029 - time (sec): 8.94 - samples/sec: 3427.50 - lr: 0.000036 - momentum: 0.000000
2023-10-17 20:43:19,118 epoch 4 - iter 91/136 - loss 0.04570230 - time (sec): 10.40 - samples/sec: 3411.83 - lr: 0.000035 - momentum: 0.000000
2023-10-17 20:43:20,427 epoch 4 - iter 104/136 - loss 0.05176775 - time (sec): 11.71 - samples/sec: 3444.17 - lr: 0.000035 - momentum: 0.000000
2023-10-17 20:43:21,663 epoch 4 - iter 117/136 - loss 0.05143245 - time (sec): 12.94 - samples/sec: 3480.37 - lr: 0.000034 - momentum: 0.000000
2023-10-17 20:43:23,091 epoch 4 - iter 130/136 - loss 0.04955538 - time (sec): 14.37 - samples/sec: 3462.37 - lr: 0.000034 - momentum: 0.000000
2023-10-17 20:43:23,671 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:23,671 EPOCH 4 done: loss 0.0496 - lr: 0.000034
2023-10-17 20:43:25,138 DEV : loss 0.11402004957199097 - f1-score (micro avg) 0.792
2023-10-17 20:43:25,144 saving best model
2023-10-17 20:43:25,611 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:26,954 epoch 5 - iter 13/136 - loss 0.03063410 - time (sec): 1.32 - samples/sec: 4249.37 - lr: 0.000033 - momentum: 0.000000
2023-10-17 20:43:28,426 epoch 5 - iter 26/136 - loss 0.02995518 - time (sec): 2.80 - samples/sec: 4003.21 - lr: 0.000032 - momentum: 0.000000
2023-10-17 20:43:29,698 epoch 5 - iter 39/136 - loss 0.02782725 - time (sec): 4.07 - samples/sec: 3852.73 - lr: 0.000032 - momentum: 0.000000
2023-10-17 20:43:31,184 epoch 5 - iter 52/136 - loss 0.02730023 - time (sec): 5.55 - samples/sec: 3800.64 - lr: 0.000031 - momentum: 0.000000
2023-10-17 20:43:32,669 epoch 5 - iter 65/136 - loss 0.03436385 - time (sec): 7.04 - samples/sec: 3746.35 - lr: 0.000031 - momentum: 0.000000
2023-10-17 20:43:33,900 epoch 5 - iter 78/136 - loss 0.03270278 - time (sec): 8.27 - samples/sec: 3724.77 - lr: 0.000030 - momentum: 0.000000
2023-10-17 20:43:35,271 epoch 5 - iter 91/136 - loss 0.03166123 - time (sec): 9.64 - samples/sec: 3692.33 - lr: 0.000030 - momentum: 0.000000
2023-10-17 20:43:36,407 epoch 5 - iter 104/136 - loss 0.03261930 - time (sec): 10.78 - samples/sec: 3722.45 - lr: 0.000029 - momentum: 0.000000
2023-10-17 20:43:37,855 epoch 5 - iter 117/136 - loss 0.03205863 - time (sec): 12.23 - samples/sec: 3715.32 - lr: 0.000029 - momentum: 0.000000
2023-10-17 20:43:39,189 epoch 5 - iter 130/136 - loss 0.03339591 - time (sec): 13.56 - samples/sec: 3701.65 - lr: 0.000028 - momentum: 0.000000
2023-10-17 20:43:39,701 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:39,701 EPOCH 5 done: loss 0.0349 - lr: 0.000028
2023-10-17 20:43:41,161 DEV : loss 0.1294308602809906 - f1-score (micro avg) 0.8029
2023-10-17 20:43:41,171 saving best model
2023-10-17 20:43:41,686 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:43,361 epoch 6 - iter 13/136 - loss 0.02234781 - time (sec): 1.67 - samples/sec: 3017.58 - lr: 0.000027 - momentum: 0.000000
2023-10-17 20:43:44,615 epoch 6 - iter 26/136 - loss 0.03157132 - time (sec): 2.93 - samples/sec: 3241.45 - lr: 0.000027 - momentum: 0.000000
2023-10-17 20:43:45,968 epoch 6 - iter 39/136 - loss 0.02896451 - time (sec): 4.28 - samples/sec: 3419.38 - lr: 0.000026 - momentum: 0.000000
2023-10-17 20:43:47,486 epoch 6 - iter 52/136 - loss 0.02436989 - time (sec): 5.80 - samples/sec: 3419.02 - lr: 0.000026 - momentum: 0.000000
2023-10-17 20:43:48,962 epoch 6 - iter 65/136 - loss 0.02415456 - time (sec): 7.27 - samples/sec: 3440.57 - lr: 0.000025 - momentum: 0.000000
2023-10-17 20:43:50,588 epoch 6 - iter 78/136 - loss 0.02331112 - time (sec): 8.90 - samples/sec: 3451.15 - lr: 0.000025 - momentum: 0.000000
2023-10-17 20:43:51,950 epoch 6 - iter 91/136 - loss 0.02208564 - time (sec): 10.26 - samples/sec: 3438.57 - lr: 0.000024 - momentum: 0.000000
2023-10-17 20:43:53,304 epoch 6 - iter 104/136 - loss 0.02410552 - time (sec): 11.62 - samples/sec: 3447.65 - lr: 0.000024 - momentum: 0.000000
2023-10-17 20:43:54,810 epoch 6 - iter 117/136 - loss 0.02282725 - time (sec): 13.12 - samples/sec: 3473.11 - lr: 0.000023 - momentum: 0.000000
2023-10-17 20:43:56,039 epoch 6 - iter 130/136 - loss 0.02215833 - time (sec): 14.35 - samples/sec: 3479.14 - lr: 0.000023 - momentum: 0.000000
2023-10-17 20:43:56,545 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:56,545 EPOCH 6 done: loss 0.0227 - lr: 0.000023
2023-10-17 20:43:58,074 DEV : loss 0.13876760005950928 - f1-score (micro avg) 0.7971
2023-10-17 20:43:58,080 ----------------------------------------------------------------------------------------------------
2023-10-17 20:43:59,378 epoch 7 - iter 13/136 - loss 0.00755380 - time (sec): 1.30 - samples/sec: 3785.36 - lr: 0.000022 - momentum: 0.000000
2023-10-17 20:44:00,973 epoch 7 - iter 26/136 - loss 0.00992484 - time (sec): 2.89 - samples/sec: 3820.31 - lr: 0.000021 - momentum: 0.000000
2023-10-17 20:44:02,332 epoch 7 - iter 39/136 - loss 0.01261973 - time (sec): 4.25 - samples/sec: 3610.47 - lr: 0.000021 - momentum: 0.000000
2023-10-17 20:44:03,564 epoch 7 - iter 52/136 - loss 0.01262043 - time (sec): 5.48 - samples/sec: 3560.56 - lr: 0.000020 - momentum: 0.000000
2023-10-17 20:44:04,979 epoch 7 - iter 65/136 - loss 0.01417440 - time (sec): 6.90 - samples/sec: 3630.20 - lr: 0.000020 - momentum: 0.000000
2023-10-17 20:44:06,376 epoch 7 - iter 78/136 - loss 0.01699668 - time (sec): 8.29 - samples/sec: 3692.79 - lr: 0.000019 - momentum: 0.000000
2023-10-17 20:44:07,667 epoch 7 - iter 91/136 - loss 0.01622148 - time (sec): 9.59 - samples/sec: 3717.77 - lr: 0.000019 - momentum: 0.000000
2023-10-17 20:44:09,054 epoch 7 - iter 104/136 - loss 0.01831688 - time (sec): 10.97 - samples/sec: 3672.06 - lr: 0.000018 - momentum: 0.000000
2023-10-17 20:44:10,463 epoch 7 - iter 117/136 - loss 0.01805275 - time (sec): 12.38 - samples/sec: 3660.48 - lr: 0.000018 - momentum: 0.000000
2023-10-17 20:44:12,008 epoch 7 - iter 130/136 - loss 0.01673109 - time (sec): 13.93 - samples/sec: 3620.85 - lr: 0.000017 - momentum: 0.000000
2023-10-17 20:44:12,549 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:12,549 EPOCH 7 done: loss 0.0172 - lr: 0.000017
2023-10-17 20:44:14,050 DEV : loss 0.135068878531456 - f1-score (micro avg) 0.8007
2023-10-17 20:44:14,055 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:15,400 epoch 8 - iter 13/136 - loss 0.02534486 - time (sec): 1.34 - samples/sec: 3544.29 - lr: 0.000016 - momentum: 0.000000
2023-10-17 20:44:17,001 epoch 8 - iter 26/136 - loss 0.01371569 - time (sec): 2.94 - samples/sec: 3276.99 - lr: 0.000016 - momentum: 0.000000
2023-10-17 20:44:18,363 epoch 8 - iter 39/136 - loss 0.01519439 - time (sec): 4.31 - samples/sec: 3316.06 - lr: 0.000015 - momentum: 0.000000
2023-10-17 20:44:19,814 epoch 8 - iter 52/136 - loss 0.01421570 - time (sec): 5.76 - samples/sec: 3334.48 - lr: 0.000015 - momentum: 0.000000
2023-10-17 20:44:21,129 epoch 8 - iter 65/136 - loss 0.01455442 - time (sec): 7.07 - samples/sec: 3396.61 - lr: 0.000014 - momentum: 0.000000
2023-10-17 20:44:22,934 epoch 8 - iter 78/136 - loss 0.01281225 - time (sec): 8.88 - samples/sec: 3406.72 - lr: 0.000014 - momentum: 0.000000
2023-10-17 20:44:24,198 epoch 8 - iter 91/136 - loss 0.01236698 - time (sec): 10.14 - samples/sec: 3450.95 - lr: 0.000013 - momentum: 0.000000
2023-10-17 20:44:25,545 epoch 8 - iter 104/136 - loss 0.01253968 - time (sec): 11.49 - samples/sec: 3507.74 - lr: 0.000013 - momentum: 0.000000
2023-10-17 20:44:26,849 epoch 8 - iter 117/136 - loss 0.01184043 - time (sec): 12.79 - samples/sec: 3494.93 - lr: 0.000012 - momentum: 0.000000
2023-10-17 20:44:28,189 epoch 8 - iter 130/136 - loss 0.01190958 - time (sec): 14.13 - samples/sec: 3542.44 - lr: 0.000012 - momentum: 0.000000
2023-10-17 20:44:28,676 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:28,676 EPOCH 8 done: loss 0.0115 - lr: 0.000012
2023-10-17 20:44:30,188 DEV : loss 0.15049846470355988 - f1-score (micro avg) 0.8125
2023-10-17 20:44:30,196 saving best model
2023-10-17 20:44:30,754 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:32,109 epoch 9 - iter 13/136 - loss 0.00518564 - time (sec): 1.35 - samples/sec: 3834.24 - lr: 0.000011 - momentum: 0.000000
2023-10-17 20:44:33,708 epoch 9 - iter 26/136 - loss 0.01160391 - time (sec): 2.95 - samples/sec: 3762.86 - lr: 0.000010 - momentum: 0.000000
2023-10-17 20:44:35,210 epoch 9 - iter 39/136 - loss 0.00814467 - time (sec): 4.45 - samples/sec: 3583.25 - lr: 0.000010 - momentum: 0.000000
2023-10-17 20:44:36,459 epoch 9 - iter 52/136 - loss 0.00815978 - time (sec): 5.70 - samples/sec: 3538.25 - lr: 0.000009 - momentum: 0.000000
2023-10-17 20:44:37,693 epoch 9 - iter 65/136 - loss 0.01000613 - time (sec): 6.94 - samples/sec: 3602.20 - lr: 0.000009 - momentum: 0.000000
2023-10-17 20:44:39,091 epoch 9 - iter 78/136 - loss 0.00866915 - time (sec): 8.33 - samples/sec: 3638.27 - lr: 0.000008 - momentum: 0.000000
2023-10-17 20:44:40,432 epoch 9 - iter 91/136 - loss 0.00783014 - time (sec): 9.68 - samples/sec: 3658.37 - lr: 0.000008 - momentum: 0.000000
2023-10-17 20:44:41,715 epoch 9 - iter 104/136 - loss 0.00795667 - time (sec): 10.96 - samples/sec: 3659.40 - lr: 0.000007 - momentum: 0.000000
2023-10-17 20:44:43,025 epoch 9 - iter 117/136 - loss 0.00776984 - time (sec): 12.27 - samples/sec: 3689.62 - lr: 0.000007 - momentum: 0.000000
2023-10-17 20:44:44,402 epoch 9 - iter 130/136 - loss 0.00793713 - time (sec): 13.65 - samples/sec: 3682.03 - lr: 0.000006 - momentum: 0.000000
2023-10-17 20:44:44,873 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:44,873 EPOCH 9 done: loss 0.0083 - lr: 0.000006
2023-10-17 20:44:46,356 DEV : loss 0.1609845757484436 - f1-score (micro avg) 0.8044
2023-10-17 20:44:46,362 ----------------------------------------------------------------------------------------------------
2023-10-17 20:44:47,715 epoch 10 - iter 13/136 - loss 0.00546006 - time (sec): 1.35 - samples/sec: 3993.02 - lr: 0.000005 - momentum: 0.000000
2023-10-17 20:44:49,007 epoch 10 - iter 26/136 - loss 0.00322110 - time (sec): 2.64 - samples/sec: 3865.19 - lr: 0.000005 - momentum: 0.000000
2023-10-17 20:44:50,499 epoch 10 - iter 39/136 - loss 0.00273811 - time (sec): 4.14 - samples/sec: 3629.86 - lr: 0.000004 - momentum: 0.000000
2023-10-17 20:44:51,704 epoch 10 - iter 52/136 - loss 0.00447940 - time (sec): 5.34 - samples/sec: 3532.07 - lr: 0.000004 - momentum: 0.000000
2023-10-17 20:44:53,162 epoch 10 - iter 65/136 - loss 0.00412880 - time (sec): 6.80 - samples/sec: 3551.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 20:44:54,559 epoch 10 - iter 78/136 - loss 0.00483931 - time (sec): 8.20 - samples/sec: 3554.87 - lr: 0.000003 - momentum: 0.000000
2023-10-17 20:44:55,825 epoch 10 - iter 91/136 - loss 0.00597590 - time (sec): 9.46 - samples/sec: 3563.30 - lr: 0.000002 - momentum: 0.000000
2023-10-17 20:44:57,492 epoch 10 - iter 104/136 - loss 0.00684780 - time (sec): 11.13 - samples/sec: 3552.53 - lr: 0.000002 - momentum: 0.000000
2023-10-17 20:44:58,987 epoch 10 - iter 117/136 - loss 0.00648974 - time (sec): 12.62 - samples/sec: 3553.46 - lr: 0.000001 - momentum: 0.000000
2023-10-17 20:45:00,225 epoch 10 - iter 130/136 - loss 0.00586892 - time (sec): 13.86 - samples/sec: 3593.40 - lr: 0.000000 - momentum: 0.000000
2023-10-17 20:45:00,771 ----------------------------------------------------------------------------------------------------
2023-10-17 20:45:00,771 EPOCH 10 done: loss 0.0060 - lr: 0.000000
2023-10-17 20:45:02,256 DEV : loss 0.1766374260187149 - f1-score (micro avg) 0.8
2023-10-17 20:45:02,612 ----------------------------------------------------------------------------------------------------
2023-10-17 20:45:02,613 Loading model from best epoch ...
2023-10-17 20:45:04,070 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-17 20:45:06,110
Results:
- F-score (micro) 0.8003
- F-score (macro) 0.7578
- Accuracy 0.6851
By class:
precision recall f1-score support
LOC 0.8081 0.8910 0.8476 312
PER 0.7126 0.8702 0.7835 208
ORG 0.5957 0.5091 0.5490 55
HumanProd 0.8000 0.9091 0.8511 22
micro avg 0.7567 0.8492 0.8003 597
macro avg 0.7291 0.7948 0.7578 597
weighted avg 0.7550 0.8492 0.7979 597
2023-10-17 20:45:06,110 ----------------------------------------------------------------------------------------------------