File size: 7,652 Bytes
fa626df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from typing import List

import numpy as np
import pandas as pd
from sklearn.metrics import f1_score

COLUMNS = ["observationID", "class_id"]
poisonous_lvl = pd.read_csv(
    "http://ptak.felk.cvut.cz/plants//DanishFungiDataset/poison_status_list.csv"
)
POISONOUS_SPECIES = poisonous_lvl[poisonous_lvl["poisonous"] == 1].class_id.unique()


def classification_error_with_unknown(
    merged_df, cost_unkwnown_misclassified=10, cost_misclassified_as_unknown=0.1
):
    num_misclassified_unknown = sum((merged_df.class_id_gt == -1) & (merged_df.class_id_pred != -1))
    num_misclassified_as_unknown = sum(
        (merged_df.class_id_gt != -1) & (merged_df.class_id_pred == -1)
    )
    num_misclassified_other = sum(
        (merged_df.class_id_gt != merged_df.class_id_pred)
        & (merged_df.class_id_pred != -1)
        & (merged_df.class_id_gt != -1)
    )
    return (
        num_misclassified_other
        + num_misclassified_unknown * cost_unkwnown_misclassified
        + num_misclassified_as_unknown * cost_misclassified_as_unknown
    ) / len(merged_df)


def classification_error(merged_df):
    return classification_error_with_unknown(
        merged_df, cost_misclassified_as_unknown=1, cost_unkwnown_misclassified=1
    )


def num_psc_decisions(merged_df):
    # Number of observations that were misclassified as edible, when in fact they are poisonous
    num_psc = sum(
        merged_df.class_id_gt.isin(POISONOUS_SPECIES)
        & ~merged_df.class_id_pred.isin(POISONOUS_SPECIES)
    )
    return num_psc


def num_esc_decisions(merged_df):
    # Number of observations that were misclassified as poisonus, when in fact they are edible
    num_esc = sum(
        ~merged_df.class_id_gt.isin(POISONOUS_SPECIES)
        & merged_df.class_id_pred.isin(POISONOUS_SPECIES)
    )
    return num_esc


def psc_esc_cost_score(merged_df, cost_psc=100, cost_esc=1):
    return (
        cost_psc * num_psc_decisions(merged_df) + cost_esc * num_esc_decisions(merged_df)
    ) / len(merged_df)


def evaluate_csv(test_annotation_file: str, user_submission_file: str) -> List[dict]:
    # load gt annotations
    gt_df = pd.read_csv(test_annotation_file, sep=",")
    for col in COLUMNS:
        assert col in gt_df, f"Test annotation file is missing column '{col}'."
    # keep only observation-based predictions
    gt_df = gt_df.drop_duplicates("observationID")

    # load user predictions
    try:
        is_tsv = user_submission_file.endswith(".tsv")
        user_pred_df = pd.read_csv(user_submission_file, sep="\t" if is_tsv else ",")
    except Exception:
        print("Could not read file submitted by the user.")
        raise ValueError("Could not read file submitted by the user.")

    # validate user predictions
    for col in COLUMNS:
        if col not in user_pred_df:
            print(f"File submitted by the user is missing column '{col}'.")
            raise ValueError(f"File submitted by the user is missing column '{col}'.")
    if len(gt_df) != len(user_pred_df):
        print(f"File submitted by the user should have {len(gt_df)} records.")
        raise ValueError(f"File submitted by the user should have {len(gt_df)} records.")
    missing_obs = gt_df.loc[
        ~gt_df["observationID"].isin(user_pred_df["observationID"]),
        "observationID",
    ]
    if len(missing_obs) > 0:
        if len(missing_obs) > 3:
            missing_obs_str = ", ".join(missing_obs.iloc[:3].astype(str)) + ", ..."
        else:
            missing_obs_str = ", ".join(missing_obs.astype(str))
        print(f"File submitted by the user is missing observations: {missing_obs_str}")
        raise ValueError(f"File submitted by the user is missing observations: {missing_obs_str}")

    # merge dataframes
    merged_df = pd.merge(
        gt_df,
        user_pred_df,
        how="outer",
        on="observationID",
        validate="one_to_one",
        suffixes=("_gt", "_pred"),
    )

    # evaluate accuracy_score and f1_score
    cls_error = classification_error(merged_df)
    cls_error_with_unknown = classification_error_with_unknown(merged_df)
    psc_esc_cost = psc_esc_cost_score(merged_df)

    result = [
        {
            "test_split": {
                "F1 Score": np.round(
                    f1_score(merged_df["class_id_gt"], merged_df["class_id_pred"], average="macro")
                    * 100,
                    2,
                ),
                "Track 1: Classification Error": np.round(cls_error, 4),
                "Track 2: Cost for Poisonousness Confusion": np.round(psc_esc_cost, 4),
                "Track 3: User-Focused Loss": np.round(cls_error + psc_esc_cost, 4),
                "Track 4: Classification Error with Special Cost for Unknown": np.round(
                    cls_error_with_unknown, 4
                ),
            }
        }
    ]

    print(f"Evaluated scores: {result[0]['test_split']}")

    return result


def evaluate(test_annotation_file, user_submission_file, phase_codename, **kwargs):
    """
    Evaluates the submission for a particular challenge phase and returns score
    Arguments:

        `test_annotations_file`: Path to test_annotation_file on the server
        `user_submission_file`: Path to file submitted by the user
        `phase_codename`: Phase to which submission is made

        `**kwargs`: keyword arguments that contains additional submission
        metadata that challenge hosts can use to send slack notification.
        You can access the submission metadata
        with kwargs['submission_metadata']

        Example: A sample submission metadata can be accessed like this:
        >>> print(kwargs['submission_metadata'])
        {
            'status': u'running',
            'when_made_public': None,
            'participant_team': 5,
            'input_file': 'https://abc.xyz/path/to/submission/file.json',
            'execution_time': u'123',
            'publication_url': u'ABC',
            'challenge_phase': 1,
            'created_by': u'ABC',
            'stdout_file': 'https://abc.xyz/path/to/stdout/file.json',
            'method_name': u'Test',
            'stderr_file': 'https://abc.xyz/path/to/stderr/file.json',
            'participant_team_name': u'Test Team',
            'project_url': u'http://foo.bar',
            'method_description': u'ABC',
            'is_public': False,
            'submission_result_file': 'https://abc.xyz/path/result/file.json',
            'id': 123,
            'submitted_at': u'2017-03-20T19:22:03.880652Z'
        }
    """
    print("Starting Evaluation.....")
    out = {}
    if phase_codename == "prediction-based":
        print("Evaluating for Prediction-based Phase")
        out["result"] = evaluate_csv(test_annotation_file, user_submission_file)

        # To display the results in the result file
        out["submission_result"] = out["result"][0]["test_split"]
        print("Completed evaluation")
    return out


if __name__ == "__main__":
    import argparse
    import json

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--test-annotation-file",
        help="Path to test_annotation_file on the server.",
        type=str,
        required=True,
    )
    parser.add_argument(
        "--user-submission-file",
        help="Path to a file created by predict script.",
        type=str,
        required=True,
    )
    args = parser.parse_args()

    result = evaluate(
        test_annotation_file=args.test_annotation_file,
        user_submission_file=args.user_submission_file,
        phase_codename="prediction-based",
    )
    with open("scores.json", "w") as f:
        json.dump(result, f)