|
|
|
import argparse |
|
import os |
|
import os.path as osp |
|
from copy import deepcopy |
|
|
|
from mmengine.config import Config, ConfigDict, DictAction |
|
from mmengine.runner import Runner |
|
from mmengine.utils import digit_version |
|
from mmengine.utils.dl_utils import TORCH_VERSION |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a model') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument('--work-dir', help='the dir to save logs and models') |
|
parser.add_argument( |
|
'--resume', |
|
nargs='?', |
|
type=str, |
|
const='auto', |
|
help='If specify checkpoint path, resume from it, while if not ' |
|
'specify, try to auto resume from the latest checkpoint ' |
|
'in the work directory.') |
|
parser.add_argument( |
|
'--amp', |
|
action='store_true', |
|
help='enable automatic-mixed-precision training') |
|
parser.add_argument( |
|
'--no-validate', |
|
action='store_true', |
|
help='whether not to evaluate the checkpoint during training') |
|
parser.add_argument( |
|
'--auto-scale-lr', |
|
action='store_true', |
|
help='whether to auto scale the learning rate according to the ' |
|
'actual batch size and the original batch size.') |
|
parser.add_argument( |
|
'--no-pin-memory', |
|
action='store_true', |
|
help='whether to disable the pin_memory option in dataloaders.') |
|
parser.add_argument( |
|
'--no-persistent-workers', |
|
action='store_true', |
|
help='whether to disable the persistent_workers option in dataloaders.' |
|
) |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
|
|
|
|
|
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
return args |
|
|
|
|
|
def merge_args(cfg, args): |
|
"""Merge CLI arguments to config.""" |
|
if args.no_validate: |
|
cfg.val_cfg = None |
|
cfg.val_dataloader = None |
|
cfg.val_evaluator = None |
|
|
|
cfg.launcher = args.launcher |
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
cfg.work_dir = args.work_dir |
|
elif cfg.get('work_dir', None) is None: |
|
|
|
cfg.work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0]) |
|
|
|
|
|
if args.amp is True: |
|
optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper') |
|
assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \ |
|
'`--amp` is not supported custom optimizer wrapper type ' \ |
|
f'`{optim_wrapper}.' |
|
cfg.optim_wrapper.type = 'AmpOptimWrapper' |
|
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic') |
|
|
|
|
|
if args.resume == 'auto': |
|
cfg.resume = True |
|
cfg.load_from = None |
|
elif args.resume is not None: |
|
cfg.resume = True |
|
cfg.load_from = args.resume |
|
|
|
|
|
if args.auto_scale_lr: |
|
cfg.auto_scale_lr.enable = True |
|
|
|
|
|
default_dataloader_cfg = ConfigDict( |
|
pin_memory=True, |
|
persistent_workers=True, |
|
collate_fn=dict(type='default_collate'), |
|
) |
|
if digit_version(TORCH_VERSION) < digit_version('1.8.0'): |
|
default_dataloader_cfg.persistent_workers = False |
|
|
|
def set_default_dataloader_cfg(cfg, field): |
|
if cfg.get(field, None) is None: |
|
return |
|
dataloader_cfg = deepcopy(default_dataloader_cfg) |
|
dataloader_cfg.update(cfg[field]) |
|
cfg[field] = dataloader_cfg |
|
if args.no_pin_memory: |
|
cfg[field]['pin_memory'] = False |
|
if args.no_persistent_workers: |
|
cfg[field]['persistent_workers'] = False |
|
|
|
set_default_dataloader_cfg(cfg, 'train_dataloader') |
|
set_default_dataloader_cfg(cfg, 'val_dataloader') |
|
set_default_dataloader_cfg(cfg, 'test_dataloader') |
|
|
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
return cfg |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
|
|
cfg = merge_args(cfg, args) |
|
|
|
|
|
runner = Runner.from_cfg(cfg) |
|
|
|
|
|
runner.train() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|