|
|
|
import argparse |
|
import os.path as osp |
|
import sys |
|
import textwrap |
|
|
|
from matplotlib import transforms |
|
from mmengine.config import Config, DictAction |
|
from mmengine.dataset import Compose |
|
from mmengine.registry import init_default_scope |
|
from mmengine.utils import ProgressBar |
|
from mmengine.visualization.utils import img_from_canvas |
|
|
|
from mmpretrain.datasets.builder import build_dataset |
|
from mmpretrain.structures import DataSample |
|
from mmpretrain.visualization import UniversalVisualizer, create_figure |
|
|
|
try: |
|
from matplotlib._tight_bbox import adjust_bbox |
|
except ImportError: |
|
|
|
from matplotlib.tight_bbox import adjust_bbox |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Browse a dataset') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--output-dir', |
|
'-o', |
|
default=None, |
|
type=str, |
|
help='If there is no display interface, you can save it.') |
|
parser.add_argument('--not-show', default=False, action='store_true') |
|
parser.add_argument( |
|
'--phase', |
|
'-p', |
|
default='train', |
|
type=str, |
|
choices=['train', 'test', 'val'], |
|
help='phase of dataset to visualize, accept "train" "test" and "val".' |
|
' Defaults to "train".') |
|
parser.add_argument( |
|
'--show-number', |
|
'-n', |
|
type=int, |
|
default=sys.maxsize, |
|
help='number of images selected to visualize, must bigger than 0. if ' |
|
'the number is bigger than length of dataset, show all the images in ' |
|
'dataset; default "sys.maxsize", show all images in dataset') |
|
parser.add_argument( |
|
'--show-interval', |
|
'-i', |
|
type=float, |
|
default=2, |
|
help='the interval of show (s)') |
|
parser.add_argument( |
|
'--mode', |
|
'-m', |
|
default='transformed', |
|
type=str, |
|
choices=['original', 'transformed', 'concat', 'pipeline'], |
|
help='display mode; display original pictures or transformed pictures' |
|
' or comparison pictures. "original" means show images load from disk' |
|
'; "transformed" means to show images after transformed; "concat" ' |
|
'means show images stitched by "original" and "output" images. ' |
|
'"pipeline" means show all the intermediate images. ' |
|
'Defaults to "transformed".') |
|
parser.add_argument( |
|
'--rescale-factor', |
|
'-r', |
|
type=float, |
|
help='(For `mode=original`) Image rescale factor, which is useful if' |
|
'the output is too large or too small.') |
|
parser.add_argument( |
|
'--channel-order', |
|
'-c', |
|
default='BGR', |
|
choices=['BGR', 'RGB'], |
|
help='The channel order of the showing images, could be "BGR" ' |
|
'or "RGB", Defaults to "BGR".') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def make_grid(imgs, names): |
|
"""Concat list of pictures into a single big picture, align height here.""" |
|
|
|
figure = create_figure(dpi=150, figsize=(16, 9)) |
|
|
|
|
|
max_nrows = 1 |
|
img_shapes = [] |
|
for img in imgs: |
|
if isinstance(img, list): |
|
max_nrows = max(len(img), max_nrows) |
|
img_shapes.append([i.shape[:2] for i in img]) |
|
else: |
|
img_shapes.append(img.shape[:2]) |
|
gs = figure.add_gridspec(max_nrows, len(imgs)) |
|
|
|
for i, img in enumerate(imgs): |
|
if isinstance(img, list): |
|
for j in range(len(img)): |
|
subplot = figure.add_subplot(gs[j, i]) |
|
subplot.axis(False) |
|
subplot.imshow(img[j]) |
|
name = '\n'.join(textwrap.wrap(names[i] + str(j), width=20)) |
|
subplot.set_title( |
|
f'{name}\n{img_shapes[i][j]}', |
|
fontsize=15, |
|
family='monospace') |
|
else: |
|
subplot = figure.add_subplot(gs[:, i]) |
|
subplot.axis(False) |
|
subplot.imshow(img) |
|
name = '\n'.join(textwrap.wrap(names[i], width=20)) |
|
subplot.set_title( |
|
f'{name}\n{img_shapes[i]}', fontsize=15, family='monospace') |
|
|
|
|
|
figure.tight_layout() |
|
|
|
|
|
points = figure.get_tightbbox( |
|
figure.canvas.get_renderer()).get_points() + [[0, 0], [0, 0.5]] |
|
adjust_bbox(figure, transforms.Bbox(points)) |
|
|
|
return img_from_canvas(figure.canvas) |
|
|
|
|
|
class InspectCompose(Compose): |
|
"""Compose multiple transforms sequentially. |
|
|
|
And record "img" field of all results in one list. |
|
""" |
|
|
|
def __init__(self, transforms, intermediate_imgs, visualizer): |
|
super().__init__(transforms=transforms) |
|
self.intermediate_imgs = intermediate_imgs |
|
self.visualizer = visualizer |
|
|
|
def __call__(self, data): |
|
if 'img' in data: |
|
self.intermediate_imgs.append({ |
|
'name': 'Original', |
|
'img': data['img'].copy() |
|
}) |
|
|
|
for t in self.transforms: |
|
data = t(data) |
|
if data is None: |
|
return None |
|
if 'img' in data: |
|
img = data['img'].copy() |
|
if 'mask' in data: |
|
tmp_img = img[0] if isinstance(img, list) else img |
|
tmp_img = self.visualizer.add_mask_to_image( |
|
tmp_img, |
|
DataSample().set_mask(data['mask']), |
|
resize=tmp_img.shape[:2]) |
|
img = [tmp_img] + img[1:] if isinstance(img, |
|
list) else tmp_img |
|
self.intermediate_imgs.append({ |
|
'name': t.__class__.__name__, |
|
'img': img |
|
}) |
|
return data |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope('mmpretrain') |
|
|
|
dataset_cfg = cfg.get(args.phase + '_dataloader').get('dataset').get('dataset') |
|
dataset = build_dataset(dataset_cfg) |
|
|
|
|
|
cfg.visualizer.pop('type') |
|
fig_cfg = dict(figsize=(16, 10)) |
|
visualizer = UniversalVisualizer( |
|
**cfg.visualizer, fig_show_cfg=fig_cfg, fig_save_cfg=fig_cfg) |
|
visualizer.dataset_meta = dataset.metainfo |
|
|
|
|
|
intermediate_imgs = [] |
|
dataset.pipeline = InspectCompose(dataset.pipeline.transforms, |
|
intermediate_imgs, visualizer) |
|
|
|
|
|
display_number = min(args.show_number, len(dataset)) |
|
progress_bar = ProgressBar(display_number) |
|
|
|
for i, item in zip(range(display_number), dataset): |
|
|
|
rescale_factor = None |
|
if args.mode == 'original': |
|
image = intermediate_imgs[0]['img'] |
|
|
|
|
|
rescale_factor = args.rescale_factor |
|
elif args.mode == 'transformed': |
|
print(intermediate_imgs) |
|
image = make_grid([intermediate_imgs[-1]['img']], ['transformed']) |
|
elif args.mode == 'concat': |
|
ori_image = intermediate_imgs[0]['img'] |
|
trans_image = intermediate_imgs[-1]['img'] |
|
image = make_grid([ori_image, trans_image], |
|
['original', 'transformed']) |
|
else: |
|
image = make_grid([result['img'] for result in intermediate_imgs], |
|
[result['name'] for result in intermediate_imgs]) |
|
|
|
intermediate_imgs.clear() |
|
|
|
data_sample = item['data_samples'].numpy() |
|
|
|
|
|
if hasattr(item['data_samples'], 'img_path'): |
|
filename = osp.basename(item['data_samples'].img_path) |
|
else: |
|
|
|
filename = f'{i}.jpg' |
|
|
|
out_file = osp.join(args.output_dir, |
|
filename) if args.output_dir is not None else None |
|
|
|
visualizer.visualize_cls( |
|
image if args.channel_order == 'RGB' else image[..., ::-1], |
|
data_sample, |
|
rescale_factor=rescale_factor, |
|
show=not args.not_show, |
|
wait_time=args.show_interval, |
|
name=filename, |
|
out_file=out_file) |
|
progress_bar.update() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|