fungi2024 / tools /browse_dataset.py
stefanwolf's picture
Initial commit
ee66a83
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import sys
import textwrap
from matplotlib import transforms
from mmengine.config import Config, DictAction
from mmengine.dataset import Compose
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmengine.visualization.utils import img_from_canvas
from mmpretrain.datasets.builder import build_dataset
from mmpretrain.structures import DataSample
from mmpretrain.visualization import UniversalVisualizer, create_figure
try:
from matplotlib._tight_bbox import adjust_bbox
except ImportError:
# To be compatible with matplotlib 3.5
from matplotlib.tight_bbox import adjust_bbox
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
'-o',
default=None,
type=str,
help='If there is no display interface, you can save it.')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--phase',
'-p',
default='train',
type=str,
choices=['train', 'test', 'val'],
help='phase of dataset to visualize, accept "train" "test" and "val".'
' Defaults to "train".')
parser.add_argument(
'--show-number',
'-n',
type=int,
default=sys.maxsize,
help='number of images selected to visualize, must bigger than 0. if '
'the number is bigger than length of dataset, show all the images in '
'dataset; default "sys.maxsize", show all images in dataset')
parser.add_argument(
'--show-interval',
'-i',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--mode',
'-m',
default='transformed',
type=str,
choices=['original', 'transformed', 'concat', 'pipeline'],
help='display mode; display original pictures or transformed pictures'
' or comparison pictures. "original" means show images load from disk'
'; "transformed" means to show images after transformed; "concat" '
'means show images stitched by "original" and "output" images. '
'"pipeline" means show all the intermediate images. '
'Defaults to "transformed".')
parser.add_argument(
'--rescale-factor',
'-r',
type=float,
help='(For `mode=original`) Image rescale factor, which is useful if'
'the output is too large or too small.')
parser.add_argument(
'--channel-order',
'-c',
default='BGR',
choices=['BGR', 'RGB'],
help='The channel order of the showing images, could be "BGR" '
'or "RGB", Defaults to "BGR".')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def make_grid(imgs, names):
"""Concat list of pictures into a single big picture, align height here."""
# A large canvas to ensure all text clear.
figure = create_figure(dpi=150, figsize=(16, 9))
# deal with imgs
max_nrows = 1
img_shapes = []
for img in imgs:
if isinstance(img, list):
max_nrows = max(len(img), max_nrows)
img_shapes.append([i.shape[:2] for i in img])
else:
img_shapes.append(img.shape[:2])
gs = figure.add_gridspec(max_nrows, len(imgs))
for i, img in enumerate(imgs):
if isinstance(img, list):
for j in range(len(img)):
subplot = figure.add_subplot(gs[j, i])
subplot.axis(False)
subplot.imshow(img[j])
name = '\n'.join(textwrap.wrap(names[i] + str(j), width=20))
subplot.set_title(
f'{name}\n{img_shapes[i][j]}',
fontsize=15,
family='monospace')
else:
subplot = figure.add_subplot(gs[:, i])
subplot.axis(False)
subplot.imshow(img)
name = '\n'.join(textwrap.wrap(names[i], width=20))
subplot.set_title(
f'{name}\n{img_shapes[i]}', fontsize=15, family='monospace')
# Manage the gap of subplots
figure.tight_layout()
# Remove the white boundary (reserve 0.5 inches at the top to show label)
points = figure.get_tightbbox(
figure.canvas.get_renderer()).get_points() + [[0, 0], [0, 0.5]]
adjust_bbox(figure, transforms.Bbox(points))
return img_from_canvas(figure.canvas)
class InspectCompose(Compose):
"""Compose multiple transforms sequentially.
And record "img" field of all results in one list.
"""
def __init__(self, transforms, intermediate_imgs, visualizer):
super().__init__(transforms=transforms)
self.intermediate_imgs = intermediate_imgs
self.visualizer = visualizer
def __call__(self, data):
if 'img' in data:
self.intermediate_imgs.append({
'name': 'Original',
'img': data['img'].copy()
})
for t in self.transforms:
data = t(data)
if data is None:
return None
if 'img' in data:
img = data['img'].copy()
if 'mask' in data:
tmp_img = img[0] if isinstance(img, list) else img
tmp_img = self.visualizer.add_mask_to_image(
tmp_img,
DataSample().set_mask(data['mask']),
resize=tmp_img.shape[:2])
img = [tmp_img] + img[1:] if isinstance(img,
list) else tmp_img
self.intermediate_imgs.append({
'name': t.__class__.__name__,
'img': img
})
return data
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope('mmpretrain') # Use mmpretrain as default scope.
dataset_cfg = cfg.get(args.phase + '_dataloader').get('dataset').get('dataset')
dataset = build_dataset(dataset_cfg)
# init visualizer
cfg.visualizer.pop('type')
fig_cfg = dict(figsize=(16, 10))
visualizer = UniversalVisualizer(
**cfg.visualizer, fig_show_cfg=fig_cfg, fig_save_cfg=fig_cfg)
visualizer.dataset_meta = dataset.metainfo
# init inspection
intermediate_imgs = []
dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
intermediate_imgs, visualizer)
# init visualization image number
display_number = min(args.show_number, len(dataset))
progress_bar = ProgressBar(display_number)
for i, item in zip(range(display_number), dataset):
rescale_factor = None
if args.mode == 'original':
image = intermediate_imgs[0]['img']
# Only original mode need rescale factor, `make_grid` will use
# matplotlib to manage the size of subplots.
rescale_factor = args.rescale_factor
elif args.mode == 'transformed':
print(intermediate_imgs)
image = make_grid([intermediate_imgs[-1]['img']], ['transformed'])
elif args.mode == 'concat':
ori_image = intermediate_imgs[0]['img']
trans_image = intermediate_imgs[-1]['img']
image = make_grid([ori_image, trans_image],
['original', 'transformed'])
else:
image = make_grid([result['img'] for result in intermediate_imgs],
[result['name'] for result in intermediate_imgs])
intermediate_imgs.clear()
data_sample = item['data_samples'].numpy()
# get filename from dataset or just use index as filename
if hasattr(item['data_samples'], 'img_path'):
filename = osp.basename(item['data_samples'].img_path)
else:
# some dataset have not image path
filename = f'{i}.jpg'
out_file = osp.join(args.output_dir,
filename) if args.output_dir is not None else None
visualizer.visualize_cls(
image if args.channel_order == 'RGB' else image[..., ::-1],
data_sample,
rescale_factor=rescale_factor,
show=not args.not_show,
wait_time=args.show_interval,
name=filename,
out_file=out_file)
progress_bar.update()
if __name__ == '__main__':
main()