import pandas as pd import numpy as np import os import subprocess import sys from tqdm import tqdm import timm import torchvision.transforms as T from PIL import Image import torch # custom script arguments CONFIG_PATH = 'models/swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6.py' CHECKPOINT_PATH = "models/swinv2_base_w24_b16x4-fp16_fungi+val_res_384_cb_epochs_6_epoch_6_20240514-de00365e.pth" SCORE_THRESHOLD = 0.2 def run_inference(input_csv, output_csv, data_root_path): """Load model and dataloader and run inference.""" if not data_root_path.endswith('/'): data_root_path += '/' data_cfg_opts = [ f'test_dataloader.dataset.data_root=', f'test_dataloader.dataset.ann_file={input_csv}', f'test_dataloader.dataset.data_prefix={data_root_path}'] inference = subprocess.Popen([ 'python', '-m', 'tools.test_generate_result_pre-consensus', CONFIG_PATH, CHECKPOINT_PATH, output_csv, '--threshold', str(SCORE_THRESHOLD), '--no-scores', '--cfg-options'] + data_cfg_opts) return_code = inference.wait() if return_code != 0: print(f'Inference crashed with exit code {return_code}') sys.exit(return_code) print(f'Written {output_csv}') if __name__ == "__main__": import zipfile with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref: zip_ref.extractall("/tmp/data") metadata_file_path = "./FungiCLEF2024_TestMetadata.csv" run_inference(metadata_file_path, "./submission.csv", "/tmp/data/private_testset")