# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp from copy import deepcopy from mmengine.config import Config, ConfigDict, DictAction from mmengine.runner import Runner from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION def parse_args(): parser = argparse.ArgumentParser(description='Train a model') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--resume', nargs='?', type=str, const='auto', help='If specify checkpoint path, resume from it, while if not ' 'specify, try to auto resume from the latest checkpoint ' 'in the work directory.') parser.add_argument( '--amp', action='store_true', help='enable automatic-mixed-precision training') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') parser.add_argument( '--auto-scale-lr', action='store_true', help='whether to auto scale the learning rate according to the ' 'actual batch size and the original batch size.') parser.add_argument( '--no-pin-memory', action='store_true', help='whether to disable the pin_memory option in dataloaders.') parser.add_argument( '--no-persistent-workers', action='store_true', help='whether to disable the persistent_workers option in dataloaders.' ) parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') # When using PyTorch version >= 2.0.0, the `torch.distributed.launch` # will pass the `--local-rank` parameter to `tools/train.py` instead # of `--local_rank`. parser.add_argument('--local_rank', '--local-rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def merge_args(cfg, args): """Merge CLI arguments to config.""" if args.no_validate: cfg.val_cfg = None cfg.val_dataloader = None cfg.val_evaluator = None cfg.launcher = args.launcher # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) # enable automatic-mixed-precision training if args.amp is True: optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper') assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \ '`--amp` is not supported custom optimizer wrapper type ' \ f'`{optim_wrapper}.' cfg.optim_wrapper.type = 'AmpOptimWrapper' cfg.optim_wrapper.setdefault('loss_scale', 'dynamic') # resume training if args.resume == 'auto': cfg.resume = True cfg.load_from = None elif args.resume is not None: cfg.resume = True cfg.load_from = args.resume # enable auto scale learning rate if args.auto_scale_lr: cfg.auto_scale_lr.enable = True # set dataloader args default_dataloader_cfg = ConfigDict( pin_memory=True, persistent_workers=True, collate_fn=dict(type='default_collate'), ) if digit_version(TORCH_VERSION) < digit_version('1.8.0'): default_dataloader_cfg.persistent_workers = False def set_default_dataloader_cfg(cfg, field): if cfg.get(field, None) is None: return dataloader_cfg = deepcopy(default_dataloader_cfg) dataloader_cfg.update(cfg[field]) cfg[field] = dataloader_cfg if args.no_pin_memory: cfg[field]['pin_memory'] = False if args.no_persistent_workers: cfg[field]['persistent_workers'] = False set_default_dataloader_cfg(cfg, 'train_dataloader') set_default_dataloader_cfg(cfg, 'val_dataloader') set_default_dataloader_cfg(cfg, 'test_dataloader') if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) return cfg def main(): args = parse_args() # load config cfg = Config.fromfile(args.config) # merge cli arguments to config cfg = merge_args(cfg, args) # build the runner from config runner = Runner.from_cfg(cfg) # start training runner.train() if __name__ == '__main__': main()