--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: Whisper_large_Somali results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs so_so type: google/fleurs config: so_so split: test metrics: - type: wer value: 55.04238164151334 name: Wer --- # Whisper_large_Somali This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs so_so dataset. It achieves the following results on the evaluation set: - Loss: 2.0039 - Wer: 55.0424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0012 | 38.44 | 500 | 1.8906 | 55.4145 | | 0.0004 | 76.89 | 1000 | 2.0039 | 55.0424 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2