Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1>A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone</h1>
|
2 |
+
|
3 |
+
[GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/tree/main)
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
## Usage
|
8 |
+
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
|
9 |
+
```
|
10 |
+
torch==2.0.1
|
11 |
+
torchvision==0.15.2
|
12 |
+
transformers==4.37.2
|
13 |
+
megfile==3.1.2
|
14 |
+
```
|
15 |
+
|
16 |
+
|
17 |
+
```python
|
18 |
+
# test.py
|
19 |
+
import torch
|
20 |
+
from PIL import Image
|
21 |
+
from transformers import AutoModel, AutoTokenizer
|
22 |
+
|
23 |
+
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
|
24 |
+
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
|
25 |
+
model = model.eval().cuda()
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
|
27 |
+
|
28 |
+
image = Image.open('xx.jpg').convert('RGB')
|
29 |
+
question = 'What is in the image?'
|
30 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
31 |
+
|
32 |
+
res = model.chat(
|
33 |
+
image=None,
|
34 |
+
msgs=msgs,
|
35 |
+
tokenizer=tokenizer
|
36 |
+
)
|
37 |
+
print(res)
|
38 |
+
|
39 |
+
## if you want to use streaming, please make sure sampling=True and stream=True
|
40 |
+
## the model.chat will return a generator
|
41 |
+
res = model.chat(
|
42 |
+
image=None,
|
43 |
+
msgs=msgs,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
sampling=True,
|
46 |
+
stream=True
|
47 |
+
)
|
48 |
+
|
49 |
+
generated_text = ""
|
50 |
+
for new_text in res:
|
51 |
+
generated_text += new_text
|
52 |
+
print(new_text, flush=True, end='')
|
53 |
+
```
|