--- tags: - vision - image-matching inference: false pipeline_tag: keypoint-detection --- # SuperPoint ## Overview The SuperPoint model was proposed in [SuperPoint: Self-Supervised Interest Point Detection and Description](https://arxiv.org/abs/1712.07629) by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich. This model is the result of a self-supervised training of a fully-convolutional network for interest point detection and description. The model is able to detect interest points that are repeatable under homographic transformations and provide a descriptor for each point. The use of the model in its own is limited, but it can be used as a feature extractor for other tasks such as homography estimation, image matching, etc. The abstract from the paper is the following: *This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.* drawing SuperPoint overview. Taken from the original paper. ## Usage tips Here is a quick example of using the model to detect interest points in an image: ```python from transformers import AutoImageProcessor, SuperPointForKeypointDetection import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") inputs = processor(image, return_tensors="pt") outputs = model(**inputs) ``` The outputs contain the list of keypoint coordinates with their respective score and description (a 256-long vector). You can also feed multiple images to the model. Due to the nature of SuperPoint, to output a dynamic number of keypoints, you will need to use the mask attribute to retrieve the respective information : ```python from transformers import AutoImageProcessor, SuperPointForKeypointDetection import torch from PIL import Image import requests url_image_1 = "http://images.cocodataset.org/val2017/000000039769.jpg" image_1 = Image.open(requests.get(url_image_1, stream=True).raw) url_image_2 = "http://images.cocodataset.org/test-stuff2017/000000000568.jpg" image_2 = Image.open(requests.get(url_image_2, stream=True).raw) images = [image_1, image_2] processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") inputs = processor(images, return_tensors="pt") outputs = model(**inputs) image_sizes = [(image.size[1], image.size[0]) for image in images] outputs = processor.post_process_keypoint_detection(outputs, image_sizes) for output in outputs: keypoints = output["keypoints"] scores = output["scores"] descriptors = output["descriptors"] ``` You can then print the keypoints on the image of your choice to visualize the result: ```python import matplotlib.pyplot as plt plt.axis("off") plt.imshow(image) plt.scatter( keypoints[:, 0], keypoints[:, 1], c=scores * 100, s=scores * 50, alpha=0.8 ) plt.savefig(f"output_image.png") ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/ZtFmphEhx8tcbEQqOolyE.png) This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille). The original code can be found [here](https://github.com/magicleap/SuperPointPretrainedNetwork). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SuperPoint. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - A notebook showcasing inference and visualization with SuperPoint can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SuperPoint/Inference_with_SuperPoint_to_detect_interest_points_in_an_image.ipynb). 🌎 ## SuperPointConfig [[autodoc]] SuperPointConfig ## SuperPointImageProcessor [[autodoc]] SuperPointImageProcessor - preprocess - post_process_keypoint_detection ## SuperPointForKeypointDetection [[autodoc]] SuperPointForKeypointDetection - forward