Model save
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,30 +72,21 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.0877 | 11.11 | 5000 | 0.1818 | 0.8304 | 0.8835 | 0.8561 | 0.9594 |
|
91 |
-
| 0.0811 | 12.22 | 5500 | 0.1842 | 0.8374 | 0.8872 | 0.8616 | 0.9613 |
|
92 |
-
| 0.0735 | 13.33 | 6000 | 0.1858 | 0.8393 | 0.8777 | 0.8581 | 0.9616 |
|
93 |
-
| 0.07 | 14.44 | 6500 | 0.1933 | 0.8349 | 0.8794 | 0.8566 | 0.9602 |
|
94 |
-
| 0.0674 | 15.56 | 7000 | 0.1913 | 0.8384 | 0.8852 | 0.8612 | 0.9613 |
|
95 |
-
| 0.0671 | 16.67 | 7500 | 0.1927 | 0.8340 | 0.8823 | 0.8575 | 0.9606 |
|
96 |
-
| 0.0606 | 17.78 | 8000 | 0.1963 | 0.8398 | 0.8815 | 0.8601 | 0.9607 |
|
97 |
-
| 0.0601 | 18.89 | 8500 | 0.1925 | 0.8395 | 0.8794 | 0.8590 | 0.9615 |
|
98 |
-
| 0.0559 | 20.0 | 9000 | 0.1943 | 0.8392 | 0.8798 | 0.8590 | 0.9608 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8408018867924528
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8835192069392813
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8616314199395771
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9620919487995152
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.1622
|
47 |
+
- Precision: 0.8408
|
48 |
+
- Recall: 0.8835
|
49 |
+
- F1: 0.8616
|
50 |
+
- Accuracy: 0.9621
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.4517 | 1.11 | 500 | 0.2019 | 0.7361 | 0.7708 | 0.7530 | 0.9402 |
|
82 |
+
| 0.2103 | 2.22 | 1000 | 0.1727 | 0.7759 | 0.8381 | 0.8058 | 0.9518 |
|
83 |
+
| 0.1634 | 3.33 | 1500 | 0.1576 | 0.7943 | 0.8517 | 0.8220 | 0.9552 |
|
84 |
+
| 0.1359 | 4.44 | 2000 | 0.1661 | 0.8093 | 0.8625 | 0.8350 | 0.9567 |
|
85 |
+
| 0.1214 | 5.56 | 2500 | 0.1619 | 0.8237 | 0.8625 | 0.8426 | 0.9579 |
|
86 |
+
| 0.0986 | 6.67 | 3000 | 0.1605 | 0.8256 | 0.8761 | 0.8501 | 0.9606 |
|
87 |
+
| 0.0903 | 7.78 | 3500 | 0.1634 | 0.8343 | 0.8736 | 0.8535 | 0.9604 |
|
88 |
+
| 0.0805 | 8.89 | 4000 | 0.1611 | 0.8403 | 0.8823 | 0.8608 | 0.9614 |
|
89 |
+
| 0.0797 | 10.0 | 4500 | 0.1622 | 0.8408 | 0.8835 | 0.8616 | 0.9621 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
### Framework versions
|