suehyunpark commited on
Commit
fa611d0
1 Parent(s): 7236012

Model save

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: barc0/Llama-3.1-ARC-Potpourri-Induction-8B
3
+ library_name: transformers
4
+ model_name: potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task-warm-start
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task-warm-start
13
+
14
+ This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Induction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="suehyunpark/potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task-warm-start", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/suehyun/arc-improve/runs/wuu60040)
31
+
32
+ This model was trained with SFT.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.0
37
+ - Transformers: 4.46.2
38
+ - Pytorch: 2.5.1
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+
45
+
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 3783747502080.0,
4
+ "train_loss": 0.5461173463198874,
5
+ "train_runtime": 901.4481,
6
+ "train_samples": 169,
7
+ "train_samples_per_second": 0.562,
8
+ "train_steps_per_second": 0.02
9
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.46.2"
12
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 3783747502080.0,
4
+ "train_loss": 0.5461173463198874,
5
+ "train_runtime": 901.4481,
6
+ "train_samples": 169,
7
+ "train_samples_per_second": 0.562,
8
+ "train_steps_per_second": 0.02
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 18,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16666666666666666,
13
+ "grad_norm": 236.14656987198234,
14
+ "learning_rate": 5e-06,
15
+ "loss": 2.5604,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.3333333333333333,
20
+ "grad_norm": 201.89433604340425,
21
+ "learning_rate": 1e-05,
22
+ "loss": 2.1833,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.5,
27
+ "grad_norm": 43.15775775201472,
28
+ "learning_rate": 9.903926402016153e-06,
29
+ "loss": 0.9756,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.6666666666666666,
34
+ "grad_norm": 13.315262915709834,
35
+ "learning_rate": 9.619397662556434e-06,
36
+ "loss": 0.7236,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.8333333333333334,
41
+ "grad_norm": 8.220944289845372,
42
+ "learning_rate": 9.157348061512728e-06,
43
+ "loss": 0.4679,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 1.0,
48
+ "grad_norm": 16.58577267851266,
49
+ "learning_rate": 8.535533905932739e-06,
50
+ "loss": 0.402,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 1.0,
55
+ "eval_loss": 0.32322201132774353,
56
+ "eval_runtime": 1.0011,
57
+ "eval_samples_per_second": 8.99,
58
+ "eval_steps_per_second": 2.997,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 1.1666666666666667,
63
+ "grad_norm": 2.76249506004443,
64
+ "learning_rate": 7.777851165098012e-06,
65
+ "loss": 0.2663,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 1.3333333333333333,
70
+ "grad_norm": 2.763402651988573,
71
+ "learning_rate": 6.913417161825449e-06,
72
+ "loss": 0.2429,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 1.5,
77
+ "grad_norm": 3.883639510915858,
78
+ "learning_rate": 5.975451610080643e-06,
79
+ "loss": 0.2455,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 1.6666666666666665,
84
+ "grad_norm": 3.161760936759259,
85
+ "learning_rate": 5e-06,
86
+ "loss": 0.2269,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 1.8333333333333335,
91
+ "grad_norm": 2.335011386155214,
92
+ "learning_rate": 4.02454838991936e-06,
93
+ "loss": 0.2229,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 2.0,
98
+ "grad_norm": 1.716063572976715,
99
+ "learning_rate": 3.0865828381745515e-06,
100
+ "loss": 0.1921,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 2.0,
105
+ "eval_loss": 0.24893158674240112,
106
+ "eval_runtime": 0.9909,
107
+ "eval_samples_per_second": 9.083,
108
+ "eval_steps_per_second": 3.028,
109
+ "step": 12
110
+ },
111
+ {
112
+ "epoch": 2.1666666666666665,
113
+ "grad_norm": 0.8996504564335516,
114
+ "learning_rate": 2.2221488349019903e-06,
115
+ "loss": 0.1879,
116
+ "step": 13
117
+ },
118
+ {
119
+ "epoch": 2.3333333333333335,
120
+ "grad_norm": 1.3172641910170275,
121
+ "learning_rate": 1.4644660940672628e-06,
122
+ "loss": 0.1706,
123
+ "step": 14
124
+ },
125
+ {
126
+ "epoch": 2.5,
127
+ "grad_norm": 1.0444149673130907,
128
+ "learning_rate": 8.426519384872733e-07,
129
+ "loss": 0.1959,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 2.6666666666666665,
134
+ "grad_norm": 0.6948355165030632,
135
+ "learning_rate": 3.8060233744356634e-07,
136
+ "loss": 0.2043,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 2.8333333333333335,
141
+ "grad_norm": 0.6328551118621334,
142
+ "learning_rate": 9.607359798384785e-08,
143
+ "loss": 0.1693,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 3.0,
148
+ "grad_norm": 0.7570021616382325,
149
+ "learning_rate": 0.0,
150
+ "loss": 0.1928,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 3.0,
155
+ "eval_loss": 0.23970693349838257,
156
+ "eval_runtime": 0.9997,
157
+ "eval_samples_per_second": 9.002,
158
+ "eval_steps_per_second": 3.001,
159
+ "step": 18
160
+ },
161
+ {
162
+ "epoch": 3.0,
163
+ "step": 18,
164
+ "total_flos": 3783747502080.0,
165
+ "train_loss": 0.5461173463198874,
166
+ "train_runtime": 901.4481,
167
+ "train_samples_per_second": 0.562,
168
+ "train_steps_per_second": 0.02
169
+ }
170
+ ],
171
+ "logging_steps": 1,
172
+ "max_steps": 18,
173
+ "num_input_tokens_seen": 0,
174
+ "num_train_epochs": 3,
175
+ "save_steps": 500,
176
+ "stateful_callbacks": {
177
+ "TrainerControl": {
178
+ "args": {
179
+ "should_epoch_stop": false,
180
+ "should_evaluate": false,
181
+ "should_log": false,
182
+ "should_save": true,
183
+ "should_training_stop": true
184
+ },
185
+ "attributes": {}
186
+ }
187
+ },
188
+ "total_flos": 3783747502080.0,
189
+ "train_batch_size": 8,
190
+ "trial_name": null,
191
+ "trial_params": null
192
+ }