Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- checkpoint-1200/README.md +202 -0
- checkpoint-1200/adapter_config.json +380 -0
- checkpoint-1200/adapter_model.safetensors +3 -0
- checkpoint-1200/latest +1 -0
- checkpoint-1200/qwen.tiktoken +0 -0
- checkpoint-1200/rng_state_0.pth +3 -0
- checkpoint-1200/rng_state_1.pth +3 -0
- checkpoint-1200/rng_state_2.pth +3 -0
- checkpoint-1200/rng_state_3.pth +3 -0
- checkpoint-1200/scheduler.pt +3 -0
- checkpoint-1200/special_tokens_map.json +3 -0
- checkpoint-1200/tokenizer_config.json +14 -0
- checkpoint-1200/trainer_state.json +873 -0
- checkpoint-1200/training_args.bin +3 -0
- checkpoint-1200/zero_to_fp32.py +587 -0
- checkpoint-1600/README.md +202 -0
- checkpoint-1600/adapter_config.json +380 -0
- checkpoint-1600/adapter_model.safetensors +3 -0
- checkpoint-1600/latest +1 -0
- checkpoint-1600/qwen.tiktoken +0 -0
- checkpoint-1600/rng_state_0.pth +3 -0
- checkpoint-1600/rng_state_1.pth +3 -0
- checkpoint-1600/rng_state_2.pth +3 -0
- checkpoint-1600/rng_state_3.pth +3 -0
- checkpoint-1600/scheduler.pt +3 -0
- checkpoint-1600/special_tokens_map.json +3 -0
- checkpoint-1600/tokenizer_config.json +14 -0
- checkpoint-1600/trainer_state.json +1153 -0
- checkpoint-1600/training_args.bin +3 -0
- checkpoint-1600/zero_to_fp32.py +587 -0
- checkpoint-2000/README.md +202 -0
- checkpoint-2000/adapter_config.json +380 -0
- checkpoint-2000/adapter_model.safetensors +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/qwen.tiktoken +0 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/rng_state_2.pth +3 -0
- checkpoint-2000/rng_state_3.pth +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/special_tokens_map.json +3 -0
- checkpoint-2000/tokenizer_config.json +14 -0
- checkpoint-2000/trainer_state.json +1433 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/zero_to_fp32.py +587 -0
- checkpoint-2400/README.md +202 -0
- checkpoint-2400/adapter_config.json +380 -0
- checkpoint-2400/adapter_model.safetensors +3 -0
- checkpoint-2400/latest +1 -0
- checkpoint-2400/qwen.tiktoken +0 -0
checkpoint-1200/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-1200/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-1200/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db88b90bb7ac9649582bbf46e54c8eada48a8e8bd5b6320a2df24ed173fc1829
|
3 |
+
size 469105640
|
checkpoint-1200/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1200
|
checkpoint-1200/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f65bd43ec266e83fbc7c05e0ae3dc56511353bbd178526e8712deba877ff45a5
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce79252b084241544b5446d4368a6dcb69615e386688b4e69d5328e5e26fdef1
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d2e6e0b1b7cd100ff2ce47ac8562fb598dd799f731f8b79d741eab77a0f030c
|
3 |
+
size 14960
|
checkpoint-1200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd25289c6a8d6fa0d90d929482ac6674692fee99f0b5002b01c466d60b1ab094
|
3 |
+
size 14960
|
checkpoint-1200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:034ee3da76b692bee85a05be8fac00a73173abe1e3698813e0bd90da0df473f4
|
3 |
+
size 1064
|
checkpoint-1200/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-1200/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-1200/trainer_state.json
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.16005868818566807,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
}
|
851 |
+
],
|
852 |
+
"logging_steps": 10,
|
853 |
+
"max_steps": 7497,
|
854 |
+
"num_input_tokens_seen": 0,
|
855 |
+
"num_train_epochs": 1,
|
856 |
+
"save_steps": 400,
|
857 |
+
"stateful_callbacks": {
|
858 |
+
"TrainerControl": {
|
859 |
+
"args": {
|
860 |
+
"should_epoch_stop": false,
|
861 |
+
"should_evaluate": false,
|
862 |
+
"should_log": false,
|
863 |
+
"should_save": true,
|
864 |
+
"should_training_stop": false
|
865 |
+
},
|
866 |
+
"attributes": {}
|
867 |
+
}
|
868 |
+
},
|
869 |
+
"total_flos": 3.280284708293837e+18,
|
870 |
+
"train_batch_size": 4,
|
871 |
+
"trial_name": null,
|
872 |
+
"trial_params": null
|
873 |
+
}
|
checkpoint-1200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-1200/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-1600/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-1600/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-1600/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2e8f02b580a83f9a0dcf2c64cdd40b6224ce4d0c5f7b6bf5c54252469b746fd
|
3 |
+
size 469105640
|
checkpoint-1600/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1600
|
checkpoint-1600/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1600/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7867300d493c7c70556f317580df469210465c281860ed7afa76d8cc69360a49
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4a69fe0cdc1dde42061be6b4ada5179bad5abd7cb5f1a162b97c6c328a15b49
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f324d2b3935846b844c4dc221df4ac446a4fb48bd06ecca758c0763ce6ce627a
|
3 |
+
size 14960
|
checkpoint-1600/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7150b8ce206b4a26f42a865a11c03f659908080e31492b757e58b801f9fffbc5
|
3 |
+
size 14960
|
checkpoint-1600/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b92b7d41119c1f55a67eb2522899e6a677806ed9022c1df91778b1c215870a1
|
3 |
+
size 1064
|
checkpoint-1600/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-1600/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-1600/trainer_state.json
ADDED
@@ -0,0 +1,1153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.21341158424755743,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.16139251058721532,
|
853 |
+
"grad_norm": 2.347985877636318,
|
854 |
+
"learning_rate": 2.8301985044857947e-05,
|
855 |
+
"loss": 0.7199,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.16272633298876255,
|
860 |
+
"grad_norm": 2.2534314586033113,
|
861 |
+
"learning_rate": 2.8272522724749743e-05,
|
862 |
+
"loss": 0.6835,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.16406015539030977,
|
867 |
+
"grad_norm": 3.159583116387406,
|
868 |
+
"learning_rate": 2.8242822605285323e-05,
|
869 |
+
"loss": 0.7122,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.16539397779185702,
|
874 |
+
"grad_norm": 2.086588782887239,
|
875 |
+
"learning_rate": 2.8212885218591812e-05,
|
876 |
+
"loss": 0.6949,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16672780019340425,
|
881 |
+
"grad_norm": 7.284236966547317,
|
882 |
+
"learning_rate": 2.8182711101047362e-05,
|
883 |
+
"loss": 0.6641,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16806162259495147,
|
888 |
+
"grad_norm": 3.0369619450249594,
|
889 |
+
"learning_rate": 2.815230079327156e-05,
|
890 |
+
"loss": 0.6731,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16939544499649872,
|
895 |
+
"grad_norm": 1.4144726574636068,
|
896 |
+
"learning_rate": 2.8121654840115734e-05,
|
897 |
+
"loss": 0.6898,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.17072926739804595,
|
902 |
+
"grad_norm": 3.66202356670303,
|
903 |
+
"learning_rate": 2.809077379065319e-05,
|
904 |
+
"loss": 0.7174,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.17206308979959317,
|
909 |
+
"grad_norm": 4.778073521019285,
|
910 |
+
"learning_rate": 2.805965819816937e-05,
|
911 |
+
"loss": 0.6186,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.17339691220114042,
|
916 |
+
"grad_norm": 3.9620427201734576,
|
917 |
+
"learning_rate": 2.802830862015196e-05,
|
918 |
+
"loss": 0.684,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.17473073460268765,
|
923 |
+
"grad_norm": 4.170199740083487,
|
924 |
+
"learning_rate": 2.799672561828087e-05,
|
925 |
+
"loss": 0.7102,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.17606455700423487,
|
930 |
+
"grad_norm": 2.2612205048804714,
|
931 |
+
"learning_rate": 2.79649097584182e-05,
|
932 |
+
"loss": 0.7451,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17739837940578213,
|
937 |
+
"grad_norm": 1.7156828128822517,
|
938 |
+
"learning_rate": 2.7932861610598077e-05,
|
939 |
+
"loss": 0.6641,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17873220180732935,
|
944 |
+
"grad_norm": 7.960733847217257,
|
945 |
+
"learning_rate": 2.7900581749016466e-05,
|
946 |
+
"loss": 0.7365,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1800660242088766,
|
951 |
+
"grad_norm": 2.5364939682563756,
|
952 |
+
"learning_rate": 2.7868070752020865e-05,
|
953 |
+
"loss": 0.7078,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.18139984661042383,
|
958 |
+
"grad_norm": 2.7446281678776137,
|
959 |
+
"learning_rate": 2.7835329202099944e-05,
|
960 |
+
"loss": 0.7214,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.18273366901197105,
|
965 |
+
"grad_norm": 3.2416602016145886,
|
966 |
+
"learning_rate": 2.7802357685873117e-05,
|
967 |
+
"loss": 0.6757,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1840674914135183,
|
972 |
+
"grad_norm": 5.225459736579946,
|
973 |
+
"learning_rate": 2.7769156794080033e-05,
|
974 |
+
"loss": 0.7381,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.18540131381506553,
|
979 |
+
"grad_norm": 5.176692689501482,
|
980 |
+
"learning_rate": 2.7735727121569967e-05,
|
981 |
+
"loss": 0.7354,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.18673513621661275,
|
986 |
+
"grad_norm": 2.7441883232342574,
|
987 |
+
"learning_rate": 2.770206926729121e-05,
|
988 |
+
"loss": 0.6937,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.18806895861816,
|
993 |
+
"grad_norm": 2.9792116246243525,
|
994 |
+
"learning_rate": 2.7668183834280284e-05,
|
995 |
+
"loss": 0.6641,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.18940278101970723,
|
1000 |
+
"grad_norm": 2.4645298487410723,
|
1001 |
+
"learning_rate": 2.763407142965117e-05,
|
1002 |
+
"loss": 0.6274,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.19073660342125445,
|
1007 |
+
"grad_norm": 7.245032878035033,
|
1008 |
+
"learning_rate": 2.759973266458444e-05,
|
1009 |
+
"loss": 0.6962,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1920704258228017,
|
1014 |
+
"grad_norm": 5.642209662597534,
|
1015 |
+
"learning_rate": 2.756516815431627e-05,
|
1016 |
+
"loss": 0.7016,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.19340424822434893,
|
1021 |
+
"grad_norm": 2.9804981875184526,
|
1022 |
+
"learning_rate": 2.7530378518127445e-05,
|
1023 |
+
"loss": 0.7331,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.19473807062589615,
|
1028 |
+
"grad_norm": 7.496561660992361,
|
1029 |
+
"learning_rate": 2.7495364379332256e-05,
|
1030 |
+
"loss": 0.7234,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.1960718930274434,
|
1035 |
+
"grad_norm": 1.6139389803246291,
|
1036 |
+
"learning_rate": 2.7460126365267335e-05,
|
1037 |
+
"loss": 0.7013,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.19740571542899063,
|
1042 |
+
"grad_norm": 4.618678334755141,
|
1043 |
+
"learning_rate": 2.7424665107280402e-05,
|
1044 |
+
"loss": 0.6892,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19873953783053785,
|
1049 |
+
"grad_norm": 15.494190234738744,
|
1050 |
+
"learning_rate": 2.738898124071898e-05,
|
1051 |
+
"loss": 0.6785,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2000733602320851,
|
1056 |
+
"grad_norm": 3.1680363319798954,
|
1057 |
+
"learning_rate": 2.735307540491898e-05,
|
1058 |
+
"loss": 0.669,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.20140718263363233,
|
1063 |
+
"grad_norm": 2.5397562341036224,
|
1064 |
+
"learning_rate": 2.7316948243193273e-05,
|
1065 |
+
"loss": 0.6726,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.20274100503517956,
|
1070 |
+
"grad_norm": 4.139021422606072,
|
1071 |
+
"learning_rate": 2.7280600402820146e-05,
|
1072 |
+
"loss": 0.6706,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2040748274367268,
|
1077 |
+
"grad_norm": 2.7422468825646065,
|
1078 |
+
"learning_rate": 2.724403253503171e-05,
|
1079 |
+
"loss": 0.7078,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.20540864983827403,
|
1084 |
+
"grad_norm": 2.744225768808104,
|
1085 |
+
"learning_rate": 2.7207245295002242e-05,
|
1086 |
+
"loss": 0.6821,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.20674247223982126,
|
1091 |
+
"grad_norm": 2.234040668790152,
|
1092 |
+
"learning_rate": 2.7170239341836436e-05,
|
1093 |
+
"loss": 0.7451,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.2080762946413685,
|
1098 |
+
"grad_norm": 2.531733996425376,
|
1099 |
+
"learning_rate": 2.7133015338557585e-05,
|
1100 |
+
"loss": 0.7205,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20941011704291573,
|
1105 |
+
"grad_norm": 2.9772483856455616,
|
1106 |
+
"learning_rate": 2.7095573952095727e-05,
|
1107 |
+
"loss": 0.7274,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.21074393944446296,
|
1112 |
+
"grad_norm": 3.317235333047955,
|
1113 |
+
"learning_rate": 2.705791585327568e-05,
|
1114 |
+
"loss": 0.7309,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2120777618460102,
|
1119 |
+
"grad_norm": 1.9652386793628944,
|
1120 |
+
"learning_rate": 2.7020041716805014e-05,
|
1121 |
+
"loss": 0.7157,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.21341158424755743,
|
1126 |
+
"grad_norm": 2.93724058913164,
|
1127 |
+
"learning_rate": 2.6981952221261986e-05,
|
1128 |
+
"loss": 0.7123,
|
1129 |
+
"step": 1600
|
1130 |
+
}
|
1131 |
+
],
|
1132 |
+
"logging_steps": 10,
|
1133 |
+
"max_steps": 7497,
|
1134 |
+
"num_input_tokens_seen": 0,
|
1135 |
+
"num_train_epochs": 1,
|
1136 |
+
"save_steps": 400,
|
1137 |
+
"stateful_callbacks": {
|
1138 |
+
"TrainerControl": {
|
1139 |
+
"args": {
|
1140 |
+
"should_epoch_stop": false,
|
1141 |
+
"should_evaluate": false,
|
1142 |
+
"should_log": false,
|
1143 |
+
"should_save": true,
|
1144 |
+
"should_training_stop": false
|
1145 |
+
},
|
1146 |
+
"attributes": {}
|
1147 |
+
}
|
1148 |
+
},
|
1149 |
+
"total_flos": 4.3737129443917824e+18,
|
1150 |
+
"train_batch_size": 4,
|
1151 |
+
"trial_name": null,
|
1152 |
+
"trial_params": null
|
1153 |
+
}
|
checkpoint-1600/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-1600/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2000/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-2000/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-2000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57751af01e12bd284ebbcc91731f4702389a0a71f96126bbd38615dc92b5dacf
|
3 |
+
size 469105640
|
checkpoint-2000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
checkpoint-2000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0715a8783a5a13f7dbeaf0a2c771ae5d1e63d85e4ab7590f4639ca34ca9d44ee
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0db04156eec797d71f821e1a8ef1067502546f617400ccfd7ebb79a443772c00
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b25c100629b37e7df637936b46c6e551b007d14236fa4263774eee275860dfb2
|
3 |
+
size 14960
|
checkpoint-2000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c0464b9610bcd72269c77ebee7c9f59d3e72ab66b76b333f8c0965f3b65010
|
3 |
+
size 14960
|
checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a92e67779de6b66020b0d0f30877f89cdcf7536938bb2812dd4b249f5bdb5ac
|
3 |
+
size 1064
|
checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 768,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.26676448030944677,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001333822401547234,
|
13 |
+
"grad_norm": 5.80256772259428,
|
14 |
+
"learning_rate": 4e-06,
|
15 |
+
"loss": 1.0498,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002667644803094468,
|
20 |
+
"grad_norm": 33.895696082107904,
|
21 |
+
"learning_rate": 8e-06,
|
22 |
+
"loss": 1.0653,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.004001467204641702,
|
27 |
+
"grad_norm": 5.523348234283539,
|
28 |
+
"learning_rate": 1.2e-05,
|
29 |
+
"loss": 1.0341,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005335289606188936,
|
34 |
+
"grad_norm": 11.1556403156453,
|
35 |
+
"learning_rate": 1.6e-05,
|
36 |
+
"loss": 0.9692,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.00666911200773617,
|
41 |
+
"grad_norm": 3.7375231126561825,
|
42 |
+
"learning_rate": 1.9999999999999998e-05,
|
43 |
+
"loss": 0.9554,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.008002934409283404,
|
48 |
+
"grad_norm": 8.43538339698909,
|
49 |
+
"learning_rate": 2.4e-05,
|
50 |
+
"loss": 0.8965,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.009336756810830639,
|
55 |
+
"grad_norm": 13.403454896011478,
|
56 |
+
"learning_rate": 2.8e-05,
|
57 |
+
"loss": 0.8273,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010670579212377872,
|
62 |
+
"grad_norm": 3.95522050766088,
|
63 |
+
"learning_rate": 2.9999966406213696e-05,
|
64 |
+
"loss": 0.7837,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.012004401613925107,
|
69 |
+
"grad_norm": 36.799552052300854,
|
70 |
+
"learning_rate": 2.9999697656826056e-05,
|
71 |
+
"loss": 0.8288,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.01333822401547234,
|
76 |
+
"grad_norm": 1.6305479563258536,
|
77 |
+
"learning_rate": 2.9999160162865885e-05,
|
78 |
+
"loss": 0.7778,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014672046417019574,
|
83 |
+
"grad_norm": 2.159536648784889,
|
84 |
+
"learning_rate": 2.9998353933963273e-05,
|
85 |
+
"loss": 0.7616,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.016005868818566808,
|
90 |
+
"grad_norm": 3.397321425707004,
|
91 |
+
"learning_rate": 2.999727898456315e-05,
|
92 |
+
"loss": 0.7594,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017339691220114042,
|
97 |
+
"grad_norm": 4.772220837365037,
|
98 |
+
"learning_rate": 2.999593533392503e-05,
|
99 |
+
"loss": 0.756,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.018673513621661277,
|
104 |
+
"grad_norm": 2.4845945633126885,
|
105 |
+
"learning_rate": 2.9994323006122654e-05,
|
106 |
+
"loss": 0.7601,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.02000733602320851,
|
111 |
+
"grad_norm": 3.591682569169127,
|
112 |
+
"learning_rate": 2.9992442030043557e-05,
|
113 |
+
"loss": 0.7894,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.021341158424755743,
|
118 |
+
"grad_norm": 2.5679458807474416,
|
119 |
+
"learning_rate": 2.9990292439388565e-05,
|
120 |
+
"loss": 0.7093,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.022674980826302978,
|
125 |
+
"grad_norm": 1.9412569107551652,
|
126 |
+
"learning_rate": 2.9987874272671168e-05,
|
127 |
+
"loss": 0.706,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.024008803227850213,
|
132 |
+
"grad_norm": 3.2667097270489,
|
133 |
+
"learning_rate": 2.9985187573216855e-05,
|
134 |
+
"loss": 0.7586,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.025342625629397444,
|
139 |
+
"grad_norm": 4.4208737375400675,
|
140 |
+
"learning_rate": 2.998223238916232e-05,
|
141 |
+
"loss": 0.6985,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02667644803094468,
|
146 |
+
"grad_norm": 5.515966302183704,
|
147 |
+
"learning_rate": 2.9979008773454618e-05,
|
148 |
+
"loss": 0.7323,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.028010270432491914,
|
153 |
+
"grad_norm": 2.964165450396077,
|
154 |
+
"learning_rate": 2.997551678385019e-05,
|
155 |
+
"loss": 0.7603,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.02934409283403915,
|
160 |
+
"grad_norm": 3.0952916783456197,
|
161 |
+
"learning_rate": 2.997175648291384e-05,
|
162 |
+
"loss": 0.7421,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03067791523558638,
|
167 |
+
"grad_norm": 4.213588693904103,
|
168 |
+
"learning_rate": 2.996772793801763e-05,
|
169 |
+
"loss": 0.7322,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.032011737637133615,
|
174 |
+
"grad_norm": 1.8568586103139084,
|
175 |
+
"learning_rate": 2.996343122133965e-05,
|
176 |
+
"loss": 0.6922,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.033345560038680847,
|
181 |
+
"grad_norm": 4.494146778909846,
|
182 |
+
"learning_rate": 2.9958866409862745e-05,
|
183 |
+
"loss": 0.7244,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.034679382440228085,
|
188 |
+
"grad_norm": 7.438170074282725,
|
189 |
+
"learning_rate": 2.9954033585373108e-05,
|
190 |
+
"loss": 0.7093,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.036013204841775316,
|
195 |
+
"grad_norm": 2.3744787346857015,
|
196 |
+
"learning_rate": 2.994893283445885e-05,
|
197 |
+
"loss": 0.6983,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.037347027243322554,
|
202 |
+
"grad_norm": 1.4722011682616383,
|
203 |
+
"learning_rate": 2.9943564248508415e-05,
|
204 |
+
"loss": 0.6781,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.038680849644869786,
|
209 |
+
"grad_norm": 3.3397620832486075,
|
210 |
+
"learning_rate": 2.9937927923708966e-05,
|
211 |
+
"loss": 0.7399,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04001467204641702,
|
216 |
+
"grad_norm": 5.05063397044549,
|
217 |
+
"learning_rate": 2.993202396104465e-05,
|
218 |
+
"loss": 0.7671,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.041348494447964255,
|
223 |
+
"grad_norm": 3.0128431385936767,
|
224 |
+
"learning_rate": 2.9925852466294795e-05,
|
225 |
+
"loss": 0.7015,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04268231684951149,
|
230 |
+
"grad_norm": 2.0161342716764237,
|
231 |
+
"learning_rate": 2.9919413550032014e-05,
|
232 |
+
"loss": 0.7009,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04401613925105872,
|
237 |
+
"grad_norm": 1.3114004070324985,
|
238 |
+
"learning_rate": 2.991270732762022e-05,
|
239 |
+
"loss": 0.7153,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.045349961652605957,
|
244 |
+
"grad_norm": 18.493625676806268,
|
245 |
+
"learning_rate": 2.990573391921255e-05,
|
246 |
+
"loss": 0.7518,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04668378405415319,
|
251 |
+
"grad_norm": 2.9526764059703567,
|
252 |
+
"learning_rate": 2.989849344974924e-05,
|
253 |
+
"loss": 0.7133,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.048017606455700426,
|
258 |
+
"grad_norm": 5.26274958582726,
|
259 |
+
"learning_rate": 2.9890986048955368e-05,
|
260 |
+
"loss": 0.7139,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04935142885724766,
|
265 |
+
"grad_norm": 3.5319788357887933,
|
266 |
+
"learning_rate": 2.9883211851338516e-05,
|
267 |
+
"loss": 0.7084,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05068525125879489,
|
272 |
+
"grad_norm": 7.607269935902469,
|
273 |
+
"learning_rate": 2.9875170996186392e-05,
|
274 |
+
"loss": 0.7309,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05201907366034213,
|
279 |
+
"grad_norm": 2.3456663308287253,
|
280 |
+
"learning_rate": 2.986686362756431e-05,
|
281 |
+
"loss": 0.6827,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05335289606188936,
|
286 |
+
"grad_norm": 2.176182050789012,
|
287 |
+
"learning_rate": 2.9858289894312617e-05,
|
288 |
+
"loss": 0.6995,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.0546867184634366,
|
293 |
+
"grad_norm": 11.171630173781537,
|
294 |
+
"learning_rate": 2.9849449950044036e-05,
|
295 |
+
"loss": 0.7335,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05602054086498383,
|
300 |
+
"grad_norm": 6.63441431767892,
|
301 |
+
"learning_rate": 2.984034395314088e-05,
|
302 |
+
"loss": 0.7031,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05735436326653106,
|
307 |
+
"grad_norm": 2.861620412225736,
|
308 |
+
"learning_rate": 2.983097206675227e-05,
|
309 |
+
"loss": 0.6559,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.0586881856680783,
|
314 |
+
"grad_norm": 5.523165036486206,
|
315 |
+
"learning_rate": 2.9821334458791156e-05,
|
316 |
+
"loss": 0.726,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06002200806962553,
|
321 |
+
"grad_norm": 3.5602243751368197,
|
322 |
+
"learning_rate": 2.9811431301931344e-05,
|
323 |
+
"loss": 0.7202,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06135583047117276,
|
328 |
+
"grad_norm": 11.333380381168622,
|
329 |
+
"learning_rate": 2.9801262773604377e-05,
|
330 |
+
"loss": 0.7189,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06268965287271999,
|
335 |
+
"grad_norm": 14.159758615106613,
|
336 |
+
"learning_rate": 2.9790829055996398e-05,
|
337 |
+
"loss": 0.7267,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06402347527426723,
|
342 |
+
"grad_norm": 9.009079485918289,
|
343 |
+
"learning_rate": 2.978013033604483e-05,
|
344 |
+
"loss": 0.748,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06535729767581447,
|
349 |
+
"grad_norm": 1.9682648681675994,
|
350 |
+
"learning_rate": 2.976916680543506e-05,
|
351 |
+
"loss": 0.7369,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06669112007736169,
|
356 |
+
"grad_norm": 2.9278164598232777,
|
357 |
+
"learning_rate": 2.975793866059701e-05,
|
358 |
+
"loss": 0.7037,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06802494247890893,
|
363 |
+
"grad_norm": 5.5563562303649885,
|
364 |
+
"learning_rate": 2.9746446102701606e-05,
|
365 |
+
"loss": 0.6986,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06935876488045617,
|
370 |
+
"grad_norm": 4.036767303783137,
|
371 |
+
"learning_rate": 2.9734689337657157e-05,
|
372 |
+
"loss": 0.7119,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07069258728200341,
|
377 |
+
"grad_norm": 1.9856990692088847,
|
378 |
+
"learning_rate": 2.9722668576105703e-05,
|
379 |
+
"loss": 0.7205,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.07202640968355063,
|
384 |
+
"grad_norm": 5.200308739226583,
|
385 |
+
"learning_rate": 2.971038403341921e-05,
|
386 |
+
"loss": 0.6918,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07336023208509787,
|
391 |
+
"grad_norm": 2.237349124701919,
|
392 |
+
"learning_rate": 2.9697835929695727e-05,
|
393 |
+
"loss": 0.7339,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07469405448664511,
|
398 |
+
"grad_norm": 1.6388680632753365,
|
399 |
+
"learning_rate": 2.968502448975544e-05,
|
400 |
+
"loss": 0.7086,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07602787688819233,
|
405 |
+
"grad_norm": 2.8545575025135244,
|
406 |
+
"learning_rate": 2.967194994313663e-05,
|
407 |
+
"loss": 0.678,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07736169928973957,
|
412 |
+
"grad_norm": 2.674647983669599,
|
413 |
+
"learning_rate": 2.9658612524091594e-05,
|
414 |
+
"loss": 0.7119,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07869552169128681,
|
419 |
+
"grad_norm": 2.489047760330112,
|
420 |
+
"learning_rate": 2.9645012471582406e-05,
|
421 |
+
"loss": 0.7382,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08002934409283403,
|
426 |
+
"grad_norm": 5.509352102248308,
|
427 |
+
"learning_rate": 2.9631150029276662e-05,
|
428 |
+
"loss": 0.738,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08136316649438127,
|
433 |
+
"grad_norm": 3.6489235270404015,
|
434 |
+
"learning_rate": 2.9617025445543114e-05,
|
435 |
+
"loss": 0.7018,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.08269698889592851,
|
440 |
+
"grad_norm": 2.7813651243235697,
|
441 |
+
"learning_rate": 2.9602638973447218e-05,
|
442 |
+
"loss": 0.7381,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08403081129747574,
|
447 |
+
"grad_norm": 8.271390523006518,
|
448 |
+
"learning_rate": 2.9587990870746574e-05,
|
449 |
+
"loss": 0.7168,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.08536463369902297,
|
454 |
+
"grad_norm": 1.2460611751687307,
|
455 |
+
"learning_rate": 2.9573081399886356e-05,
|
456 |
+
"loss": 0.7004,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.08669845610057021,
|
461 |
+
"grad_norm": 1.704626418994062,
|
462 |
+
"learning_rate": 2.9557910827994568e-05,
|
463 |
+
"loss": 0.738,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08803227850211744,
|
468 |
+
"grad_norm": 3.275051693107957,
|
469 |
+
"learning_rate": 2.9542479426877283e-05,
|
470 |
+
"loss": 0.7017,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08936610090366467,
|
475 |
+
"grad_norm": 11.389990685570503,
|
476 |
+
"learning_rate": 2.9526787473013753e-05,
|
477 |
+
"loss": 0.7107,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.09069992330521191,
|
482 |
+
"grad_norm": 5.591277359184055,
|
483 |
+
"learning_rate": 2.9510835247551485e-05,
|
484 |
+
"loss": 0.7141,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.09203374570675915,
|
489 |
+
"grad_norm": 3.180111568581053,
|
490 |
+
"learning_rate": 2.949462303630116e-05,
|
491 |
+
"loss": 0.6987,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.09336756810830638,
|
496 |
+
"grad_norm": 3.8428068166831753,
|
497 |
+
"learning_rate": 2.9478151129731567e-05,
|
498 |
+
"loss": 0.7373,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09470139050985361,
|
503 |
+
"grad_norm": 2.231397231771392,
|
504 |
+
"learning_rate": 2.9461419822964348e-05,
|
505 |
+
"loss": 0.6962,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09603521291140085,
|
510 |
+
"grad_norm": 18.287201889017563,
|
511 |
+
"learning_rate": 2.9444429415768726e-05,
|
512 |
+
"loss": 0.6723,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09736903531294808,
|
517 |
+
"grad_norm": 4.340932687135137,
|
518 |
+
"learning_rate": 2.942718021255617e-05,
|
519 |
+
"loss": 0.7151,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09870285771449532,
|
524 |
+
"grad_norm": 2.7813821825484446,
|
525 |
+
"learning_rate": 2.940967252237488e-05,
|
526 |
+
"loss": 0.7332,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.10003668011604255,
|
531 |
+
"grad_norm": 2.3251782912937475,
|
532 |
+
"learning_rate": 2.9391906658904296e-05,
|
533 |
+
"loss": 0.6751,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.10137050251758978,
|
538 |
+
"grad_norm": 8.123799866292751,
|
539 |
+
"learning_rate": 2.937388294044946e-05,
|
540 |
+
"loss": 0.6886,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.10270432491913702,
|
545 |
+
"grad_norm": 1.528579329214318,
|
546 |
+
"learning_rate": 2.9355601689935315e-05,
|
547 |
+
"loss": 0.7146,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10403814732068425,
|
552 |
+
"grad_norm": 2.0278953433974825,
|
553 |
+
"learning_rate": 2.933706323490092e-05,
|
554 |
+
"loss": 0.7453,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10537196972223148,
|
559 |
+
"grad_norm": 1.4306270659678864,
|
560 |
+
"learning_rate": 2.9318267907493583e-05,
|
561 |
+
"loss": 0.6702,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10670579212377872,
|
566 |
+
"grad_norm": 1.5178081087799355,
|
567 |
+
"learning_rate": 2.9299216044462903e-05,
|
568 |
+
"loss": 0.7346,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10803961452532596,
|
573 |
+
"grad_norm": 9.506616797760028,
|
574 |
+
"learning_rate": 2.927990798715475e-05,
|
575 |
+
"loss": 0.6558,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1093734369268732,
|
580 |
+
"grad_norm": 2.4597311302505767,
|
581 |
+
"learning_rate": 2.926034408150513e-05,
|
582 |
+
"loss": 0.726,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.11070725932842042,
|
587 |
+
"grad_norm": 12.372180964422007,
|
588 |
+
"learning_rate": 2.9240524678034016e-05,
|
589 |
+
"loss": 0.7308,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.11204108172996766,
|
594 |
+
"grad_norm": 1.4488469801164658,
|
595 |
+
"learning_rate": 2.9220450131839037e-05,
|
596 |
+
"loss": 0.7072,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.1133749041315149,
|
601 |
+
"grad_norm": 8.602946960846197,
|
602 |
+
"learning_rate": 2.920012080258912e-05,
|
603 |
+
"loss": 0.7234,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.11470872653306212,
|
608 |
+
"grad_norm": 1.441195423452674,
|
609 |
+
"learning_rate": 2.9179537054518085e-05,
|
610 |
+
"loss": 0.6934,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.11604254893460936,
|
615 |
+
"grad_norm": 4.318952956999577,
|
616 |
+
"learning_rate": 2.9158699256418056e-05,
|
617 |
+
"loss": 0.6534,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.1173763713361566,
|
622 |
+
"grad_norm": 9.733179695623866,
|
623 |
+
"learning_rate": 2.9137607781632913e-05,
|
624 |
+
"loss": 0.71,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11871019373770382,
|
629 |
+
"grad_norm": 7.397049093836735,
|
630 |
+
"learning_rate": 2.911626300805155e-05,
|
631 |
+
"loss": 0.7386,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.12004401613925106,
|
636 |
+
"grad_norm": 2.920812240139869,
|
637 |
+
"learning_rate": 2.9094665318101155e-05,
|
638 |
+
"loss": 0.6789,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.1213778385407983,
|
643 |
+
"grad_norm": 1.7031296196271206,
|
644 |
+
"learning_rate": 2.9072815098740326e-05,
|
645 |
+
"loss": 0.715,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.12271166094234552,
|
650 |
+
"grad_norm": 1.5630656172291801,
|
651 |
+
"learning_rate": 2.9050712741452136e-05,
|
652 |
+
"loss": 0.7136,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.12404548334389276,
|
657 |
+
"grad_norm": 7.870543414771234,
|
658 |
+
"learning_rate": 2.902835864223715e-05,
|
659 |
+
"loss": 0.6669,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12537930574543998,
|
664 |
+
"grad_norm": 4.843671834991794,
|
665 |
+
"learning_rate": 2.9005753201606287e-05,
|
666 |
+
"loss": 0.7281,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12671312814698724,
|
671 |
+
"grad_norm": 3.010503818258016,
|
672 |
+
"learning_rate": 2.8982896824573678e-05,
|
673 |
+
"loss": 0.7018,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12804695054853446,
|
678 |
+
"grad_norm": 2.5552186559589654,
|
679 |
+
"learning_rate": 2.8959789920649394e-05,
|
680 |
+
"loss": 0.7338,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.12938077295008168,
|
685 |
+
"grad_norm": 12.306055851495117,
|
686 |
+
"learning_rate": 2.893643290383212e-05,
|
687 |
+
"loss": 0.6732,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.13071459535162894,
|
692 |
+
"grad_norm": 2.16185926525944,
|
693 |
+
"learning_rate": 2.891282619260172e-05,
|
694 |
+
"loss": 0.7108,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.13204841775317616,
|
699 |
+
"grad_norm": 5.992378798792086,
|
700 |
+
"learning_rate": 2.8888970209911754e-05,
|
701 |
+
"loss": 0.6525,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.13338224015472339,
|
706 |
+
"grad_norm": 2.986272238787896,
|
707 |
+
"learning_rate": 2.8864865383181893e-05,
|
708 |
+
"loss": 0.6655,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.13471606255627064,
|
713 |
+
"grad_norm": 12.855377354582437,
|
714 |
+
"learning_rate": 2.8840512144290273e-05,
|
715 |
+
"loss": 0.6826,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13604988495781786,
|
720 |
+
"grad_norm": 2.045979893776702,
|
721 |
+
"learning_rate": 2.8815910929565734e-05,
|
722 |
+
"loss": 0.6616,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1373837073593651,
|
727 |
+
"grad_norm": 6.623264301300591,
|
728 |
+
"learning_rate": 2.879106217978002e-05,
|
729 |
+
"loss": 0.6935,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13871752976091234,
|
734 |
+
"grad_norm": 2.67990218211766,
|
735 |
+
"learning_rate": 2.8765966340139892e-05,
|
736 |
+
"loss": 0.6671,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.14005135216245956,
|
741 |
+
"grad_norm": 2.699521523924172,
|
742 |
+
"learning_rate": 2.8740623860279116e-05,
|
743 |
+
"loss": 0.6763,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.14138517456400682,
|
748 |
+
"grad_norm": 4.1129898011507535,
|
749 |
+
"learning_rate": 2.871503519425044e-05,
|
750 |
+
"loss": 0.7159,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.14271899696555404,
|
755 |
+
"grad_norm": 2.4592021333659146,
|
756 |
+
"learning_rate": 2.8689200800517448e-05,
|
757 |
+
"loss": 0.6551,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.14405281936710126,
|
762 |
+
"grad_norm": 5.138500389099849,
|
763 |
+
"learning_rate": 2.866312114194634e-05,
|
764 |
+
"loss": 0.7214,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.14538664176864852,
|
769 |
+
"grad_norm": 2.822433730666048,
|
770 |
+
"learning_rate": 2.8636796685797657e-05,
|
771 |
+
"loss": 0.6862,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14672046417019574,
|
776 |
+
"grad_norm": 3.086468537427806,
|
777 |
+
"learning_rate": 2.8610227903717876e-05,
|
778 |
+
"loss": 0.6784,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14805428657174297,
|
783 |
+
"grad_norm": 2.079766793749202,
|
784 |
+
"learning_rate": 2.8583415271730994e-05,
|
785 |
+
"loss": 0.7065,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14938810897329022,
|
790 |
+
"grad_norm": 1.659870509072264,
|
791 |
+
"learning_rate": 2.855635927022998e-05,
|
792 |
+
"loss": 0.7197,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.15072193137483744,
|
797 |
+
"grad_norm": 7.870626779339635,
|
798 |
+
"learning_rate": 2.8529060383968175e-05,
|
799 |
+
"loss": 0.7305,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.15205575377638467,
|
804 |
+
"grad_norm": 3.0600340899893537,
|
805 |
+
"learning_rate": 2.850151910205061e-05,
|
806 |
+
"loss": 0.6922,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.15338957617793192,
|
811 |
+
"grad_norm": 3.6147451373702806,
|
812 |
+
"learning_rate": 2.847373591792523e-05,
|
813 |
+
"loss": 0.7044,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.15472339857947914,
|
818 |
+
"grad_norm": 4.740777951553679,
|
819 |
+
"learning_rate": 2.844571132937407e-05,
|
820 |
+
"loss": 0.6794,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15605722098102637,
|
825 |
+
"grad_norm": 3.377522973717319,
|
826 |
+
"learning_rate": 2.841744583850431e-05,
|
827 |
+
"loss": 0.673,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.15739104338257362,
|
832 |
+
"grad_norm": 4.250656077289992,
|
833 |
+
"learning_rate": 2.838893995173932e-05,
|
834 |
+
"loss": 0.6975,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.15872486578412084,
|
839 |
+
"grad_norm": 11.73693900915769,
|
840 |
+
"learning_rate": 2.836019417980955e-05,
|
841 |
+
"loss": 0.6572,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.16005868818566807,
|
846 |
+
"grad_norm": 2.729291714043308,
|
847 |
+
"learning_rate": 2.8331209037743387e-05,
|
848 |
+
"loss": 0.7247,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.16139251058721532,
|
853 |
+
"grad_norm": 2.347985877636318,
|
854 |
+
"learning_rate": 2.8301985044857947e-05,
|
855 |
+
"loss": 0.7199,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.16272633298876255,
|
860 |
+
"grad_norm": 2.2534314586033113,
|
861 |
+
"learning_rate": 2.8272522724749743e-05,
|
862 |
+
"loss": 0.6835,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.16406015539030977,
|
867 |
+
"grad_norm": 3.159583116387406,
|
868 |
+
"learning_rate": 2.8242822605285323e-05,
|
869 |
+
"loss": 0.7122,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.16539397779185702,
|
874 |
+
"grad_norm": 2.086588782887239,
|
875 |
+
"learning_rate": 2.8212885218591812e-05,
|
876 |
+
"loss": 0.6949,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16672780019340425,
|
881 |
+
"grad_norm": 7.284236966547317,
|
882 |
+
"learning_rate": 2.8182711101047362e-05,
|
883 |
+
"loss": 0.6641,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16806162259495147,
|
888 |
+
"grad_norm": 3.0369619450249594,
|
889 |
+
"learning_rate": 2.815230079327156e-05,
|
890 |
+
"loss": 0.6731,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16939544499649872,
|
895 |
+
"grad_norm": 1.4144726574636068,
|
896 |
+
"learning_rate": 2.8121654840115734e-05,
|
897 |
+
"loss": 0.6898,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.17072926739804595,
|
902 |
+
"grad_norm": 3.66202356670303,
|
903 |
+
"learning_rate": 2.809077379065319e-05,
|
904 |
+
"loss": 0.7174,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.17206308979959317,
|
909 |
+
"grad_norm": 4.778073521019285,
|
910 |
+
"learning_rate": 2.805965819816937e-05,
|
911 |
+
"loss": 0.6186,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.17339691220114042,
|
916 |
+
"grad_norm": 3.9620427201734576,
|
917 |
+
"learning_rate": 2.802830862015196e-05,
|
918 |
+
"loss": 0.684,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.17473073460268765,
|
923 |
+
"grad_norm": 4.170199740083487,
|
924 |
+
"learning_rate": 2.799672561828087e-05,
|
925 |
+
"loss": 0.7102,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.17606455700423487,
|
930 |
+
"grad_norm": 2.2612205048804714,
|
931 |
+
"learning_rate": 2.79649097584182e-05,
|
932 |
+
"loss": 0.7451,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17739837940578213,
|
937 |
+
"grad_norm": 1.7156828128822517,
|
938 |
+
"learning_rate": 2.7932861610598077e-05,
|
939 |
+
"loss": 0.6641,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17873220180732935,
|
944 |
+
"grad_norm": 7.960733847217257,
|
945 |
+
"learning_rate": 2.7900581749016466e-05,
|
946 |
+
"loss": 0.7365,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1800660242088766,
|
951 |
+
"grad_norm": 2.5364939682563756,
|
952 |
+
"learning_rate": 2.7868070752020865e-05,
|
953 |
+
"loss": 0.7078,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.18139984661042383,
|
958 |
+
"grad_norm": 2.7446281678776137,
|
959 |
+
"learning_rate": 2.7835329202099944e-05,
|
960 |
+
"loss": 0.7214,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.18273366901197105,
|
965 |
+
"grad_norm": 3.2416602016145886,
|
966 |
+
"learning_rate": 2.7802357685873117e-05,
|
967 |
+
"loss": 0.6757,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1840674914135183,
|
972 |
+
"grad_norm": 5.225459736579946,
|
973 |
+
"learning_rate": 2.7769156794080033e-05,
|
974 |
+
"loss": 0.7381,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.18540131381506553,
|
979 |
+
"grad_norm": 5.176692689501482,
|
980 |
+
"learning_rate": 2.7735727121569967e-05,
|
981 |
+
"loss": 0.7354,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.18673513621661275,
|
986 |
+
"grad_norm": 2.7441883232342574,
|
987 |
+
"learning_rate": 2.770206926729121e-05,
|
988 |
+
"loss": 0.6937,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.18806895861816,
|
993 |
+
"grad_norm": 2.9792116246243525,
|
994 |
+
"learning_rate": 2.7668183834280284e-05,
|
995 |
+
"loss": 0.6641,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.18940278101970723,
|
1000 |
+
"grad_norm": 2.4645298487410723,
|
1001 |
+
"learning_rate": 2.763407142965117e-05,
|
1002 |
+
"loss": 0.6274,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.19073660342125445,
|
1007 |
+
"grad_norm": 7.245032878035033,
|
1008 |
+
"learning_rate": 2.759973266458444e-05,
|
1009 |
+
"loss": 0.6962,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1920704258228017,
|
1014 |
+
"grad_norm": 5.642209662597534,
|
1015 |
+
"learning_rate": 2.756516815431627e-05,
|
1016 |
+
"loss": 0.7016,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.19340424822434893,
|
1021 |
+
"grad_norm": 2.9804981875184526,
|
1022 |
+
"learning_rate": 2.7530378518127445e-05,
|
1023 |
+
"loss": 0.7331,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.19473807062589615,
|
1028 |
+
"grad_norm": 7.496561660992361,
|
1029 |
+
"learning_rate": 2.7495364379332256e-05,
|
1030 |
+
"loss": 0.7234,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.1960718930274434,
|
1035 |
+
"grad_norm": 1.6139389803246291,
|
1036 |
+
"learning_rate": 2.7460126365267335e-05,
|
1037 |
+
"loss": 0.7013,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.19740571542899063,
|
1042 |
+
"grad_norm": 4.618678334755141,
|
1043 |
+
"learning_rate": 2.7424665107280402e-05,
|
1044 |
+
"loss": 0.6892,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19873953783053785,
|
1049 |
+
"grad_norm": 15.494190234738744,
|
1050 |
+
"learning_rate": 2.738898124071898e-05,
|
1051 |
+
"loss": 0.6785,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.2000733602320851,
|
1056 |
+
"grad_norm": 3.1680363319798954,
|
1057 |
+
"learning_rate": 2.735307540491898e-05,
|
1058 |
+
"loss": 0.669,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.20140718263363233,
|
1063 |
+
"grad_norm": 2.5397562341036224,
|
1064 |
+
"learning_rate": 2.7316948243193273e-05,
|
1065 |
+
"loss": 0.6726,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.20274100503517956,
|
1070 |
+
"grad_norm": 4.139021422606072,
|
1071 |
+
"learning_rate": 2.7280600402820146e-05,
|
1072 |
+
"loss": 0.6706,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.2040748274367268,
|
1077 |
+
"grad_norm": 2.7422468825646065,
|
1078 |
+
"learning_rate": 2.724403253503171e-05,
|
1079 |
+
"loss": 0.7078,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.20540864983827403,
|
1084 |
+
"grad_norm": 2.744225768808104,
|
1085 |
+
"learning_rate": 2.7207245295002242e-05,
|
1086 |
+
"loss": 0.6821,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.20674247223982126,
|
1091 |
+
"grad_norm": 2.234040668790152,
|
1092 |
+
"learning_rate": 2.7170239341836436e-05,
|
1093 |
+
"loss": 0.7451,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.2080762946413685,
|
1098 |
+
"grad_norm": 2.531733996425376,
|
1099 |
+
"learning_rate": 2.7133015338557585e-05,
|
1100 |
+
"loss": 0.7205,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20941011704291573,
|
1105 |
+
"grad_norm": 2.9772483856455616,
|
1106 |
+
"learning_rate": 2.7095573952095727e-05,
|
1107 |
+
"loss": 0.7274,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.21074393944446296,
|
1112 |
+
"grad_norm": 3.317235333047955,
|
1113 |
+
"learning_rate": 2.705791585327568e-05,
|
1114 |
+
"loss": 0.7309,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2120777618460102,
|
1119 |
+
"grad_norm": 1.9652386793628944,
|
1120 |
+
"learning_rate": 2.7020041716805014e-05,
|
1121 |
+
"loss": 0.7157,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.21341158424755743,
|
1126 |
+
"grad_norm": 2.93724058913164,
|
1127 |
+
"learning_rate": 2.6981952221261986e-05,
|
1128 |
+
"loss": 0.7123,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.21474540664910466,
|
1133 |
+
"grad_norm": 6.395577225750395,
|
1134 |
+
"learning_rate": 2.6943648049083366e-05,
|
1135 |
+
"loss": 0.6991,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2160792290506519,
|
1140 |
+
"grad_norm": 2.4292347967714973,
|
1141 |
+
"learning_rate": 2.6905129886552208e-05,
|
1142 |
+
"loss": 0.7004,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.21741305145219914,
|
1147 |
+
"grad_norm": 1.8304810950546353,
|
1148 |
+
"learning_rate": 2.6866398423785568e-05,
|
1149 |
+
"loss": 0.6941,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.2187468738537464,
|
1154 |
+
"grad_norm": 2.762870839632077,
|
1155 |
+
"learning_rate": 2.682745435472212e-05,
|
1156 |
+
"loss": 0.6928,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.2200806962552936,
|
1161 |
+
"grad_norm": 3.4172019229090917,
|
1162 |
+
"learning_rate": 2.6788298377109748e-05,
|
1163 |
+
"loss": 0.7344,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.22141451865684084,
|
1168 |
+
"grad_norm": 2.7483538989548175,
|
1169 |
+
"learning_rate": 2.6748931192493017e-05,
|
1170 |
+
"loss": 0.7367,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.2227483410583881,
|
1175 |
+
"grad_norm": 7.314729269236597,
|
1176 |
+
"learning_rate": 2.670935350620063e-05,
|
1177 |
+
"loss": 0.6849,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.2240821634599353,
|
1182 |
+
"grad_norm": 3.8688065039432527,
|
1183 |
+
"learning_rate": 2.6669566027332767e-05,
|
1184 |
+
"loss": 0.6812,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.22541598586148254,
|
1189 |
+
"grad_norm": 7.10517346658295,
|
1190 |
+
"learning_rate": 2.6629569468748404e-05,
|
1191 |
+
"loss": 0.6089,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2267498082630298,
|
1196 |
+
"grad_norm": 2.4198822683275147,
|
1197 |
+
"learning_rate": 2.658936454705251e-05,
|
1198 |
+
"loss": 0.6666,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.22808363066457701,
|
1203 |
+
"grad_norm": 2.4915285584652054,
|
1204 |
+
"learning_rate": 2.6548951982583246e-05,
|
1205 |
+
"loss": 0.7088,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.22941745306612424,
|
1210 |
+
"grad_norm": 2.2849831540010537,
|
1211 |
+
"learning_rate": 2.650833249939903e-05,
|
1212 |
+
"loss": 0.7149,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.2307512754676715,
|
1217 |
+
"grad_norm": 1.5098088938051029,
|
1218 |
+
"learning_rate": 2.6467506825265573e-05,
|
1219 |
+
"loss": 0.7254,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.23208509786921871,
|
1224 |
+
"grad_norm": 3.4800248296443814,
|
1225 |
+
"learning_rate": 2.642647569164284e-05,
|
1226 |
+
"loss": 0.6916,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.23341892027076594,
|
1231 |
+
"grad_norm": 7.281500947090542,
|
1232 |
+
"learning_rate": 2.638523983367194e-05,
|
1233 |
+
"loss": 0.6831,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2347527426723132,
|
1238 |
+
"grad_norm": 3.0161864395495446,
|
1239 |
+
"learning_rate": 2.634379999016198e-05,
|
1240 |
+
"loss": 0.6999,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.23608656507386042,
|
1245 |
+
"grad_norm": 2.0917745352156762,
|
1246 |
+
"learning_rate": 2.6302156903576784e-05,
|
1247 |
+
"loss": 0.7112,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.23742038747540764,
|
1252 |
+
"grad_norm": 1.918811185774526,
|
1253 |
+
"learning_rate": 2.6260311320021628e-05,
|
1254 |
+
"loss": 0.6725,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.2387542098769549,
|
1259 |
+
"grad_norm": 3.0697413876733695,
|
1260 |
+
"learning_rate": 2.6218263989229855e-05,
|
1261 |
+
"loss": 0.7133,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.24008803227850212,
|
1266 |
+
"grad_norm": 6.14274393655379,
|
1267 |
+
"learning_rate": 2.617601566454944e-05,
|
1268 |
+
"loss": 0.6678,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.24142185468004934,
|
1273 |
+
"grad_norm": 4.259979200715344,
|
1274 |
+
"learning_rate": 2.613356710292951e-05,
|
1275 |
+
"loss": 0.7013,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.2427556770815966,
|
1280 |
+
"grad_norm": 3.1011058557692808,
|
1281 |
+
"learning_rate": 2.6090919064906766e-05,
|
1282 |
+
"loss": 0.7027,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.24408949948314382,
|
1287 |
+
"grad_norm": 3.677900978078831,
|
1288 |
+
"learning_rate": 2.6048072314591854e-05,
|
1289 |
+
"loss": 0.711,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.24542332188469104,
|
1294 |
+
"grad_norm": 2.368576699713982,
|
1295 |
+
"learning_rate": 2.600502761965569e-05,
|
1296 |
+
"loss": 0.6917,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.2467571442862383,
|
1301 |
+
"grad_norm": 3.0346306894457,
|
1302 |
+
"learning_rate": 2.59617857513157e-05,
|
1303 |
+
"loss": 0.69,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.24809096668778552,
|
1308 |
+
"grad_norm": 3.1228131080916204,
|
1309 |
+
"learning_rate": 2.591834748432198e-05,
|
1310 |
+
"loss": 0.695,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.24942478908933274,
|
1315 |
+
"grad_norm": 2.6886660685401034,
|
1316 |
+
"learning_rate": 2.5874713596943465e-05,
|
1317 |
+
"loss": 0.6681,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.25075861149087997,
|
1322 |
+
"grad_norm": 1.7244460999561722,
|
1323 |
+
"learning_rate": 2.5830884870953933e-05,
|
1324 |
+
"loss": 0.6737,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.25209243389242725,
|
1329 |
+
"grad_norm": 2.4283725332509842,
|
1330 |
+
"learning_rate": 2.578686209161803e-05,
|
1331 |
+
"loss": 0.6598,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.2534262562939745,
|
1336 |
+
"grad_norm": 5.496556851547161,
|
1337 |
+
"learning_rate": 2.5742646047677186e-05,
|
1338 |
+
"loss": 0.6931,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2547600786955217,
|
1343 |
+
"grad_norm": 1.2751270156124934,
|
1344 |
+
"learning_rate": 2.5698237531335493e-05,
|
1345 |
+
"loss": 0.7043,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.2560939010970689,
|
1350 |
+
"grad_norm": 8.807017683974516,
|
1351 |
+
"learning_rate": 2.56536373382455e-05,
|
1352 |
+
"loss": 0.6234,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.25742772349861615,
|
1357 |
+
"grad_norm": 3.6331868296726277,
|
1358 |
+
"learning_rate": 2.5608846267493974e-05,
|
1359 |
+
"loss": 0.6763,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.25876154590016337,
|
1364 |
+
"grad_norm": 5.094905230807839,
|
1365 |
+
"learning_rate": 2.5563865121587563e-05,
|
1366 |
+
"loss": 0.6692,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.26009536830171065,
|
1371 |
+
"grad_norm": 2.0520732769663237,
|
1372 |
+
"learning_rate": 2.5518694706438445e-05,
|
1373 |
+
"loss": 0.7008,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2614291907032579,
|
1378 |
+
"grad_norm": 2.1265138955486336,
|
1379 |
+
"learning_rate": 2.5473335831349842e-05,
|
1380 |
+
"loss": 0.6623,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.2627630131048051,
|
1385 |
+
"grad_norm": 4.532469697105077,
|
1386 |
+
"learning_rate": 2.5427789309001577e-05,
|
1387 |
+
"loss": 0.7099,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.2640968355063523,
|
1392 |
+
"grad_norm": 1.8912900905557881,
|
1393 |
+
"learning_rate": 2.538205595543548e-05,
|
1394 |
+
"loss": 0.712,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.26543065790789955,
|
1399 |
+
"grad_norm": 9.714825687307293,
|
1400 |
+
"learning_rate": 2.5336136590040767e-05,
|
1401 |
+
"loss": 0.6418,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.26676448030944677,
|
1406 |
+
"grad_norm": 4.375615975749738,
|
1407 |
+
"learning_rate": 2.529003203553937e-05,
|
1408 |
+
"loss": 0.6933,
|
1409 |
+
"step": 2000
|
1410 |
+
}
|
1411 |
+
],
|
1412 |
+
"logging_steps": 10,
|
1413 |
+
"max_steps": 7497,
|
1414 |
+
"num_input_tokens_seen": 0,
|
1415 |
+
"num_train_epochs": 1,
|
1416 |
+
"save_steps": 400,
|
1417 |
+
"stateful_callbacks": {
|
1418 |
+
"TrainerControl": {
|
1419 |
+
"args": {
|
1420 |
+
"should_epoch_stop": false,
|
1421 |
+
"should_evaluate": false,
|
1422 |
+
"should_log": false,
|
1423 |
+
"should_save": true,
|
1424 |
+
"should_training_stop": false
|
1425 |
+
},
|
1426 |
+
"attributes": {}
|
1427 |
+
}
|
1428 |
+
},
|
1429 |
+
"total_flos": 5.467141180489728e+18,
|
1430 |
+
"train_batch_size": 4,
|
1431 |
+
"trial_name": null,
|
1432 |
+
"trial_params": null
|
1433 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e448587a2aaa72701b15796f660da2d8aedd670c2a2eaae01d5488a2bf1cfe
|
3 |
+
size 6520
|
checkpoint-2000/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-2400/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen-VL-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
checkpoint-2400/adapter_config.json
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-VL-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_fc",
|
24 |
+
"transformer.visual.transformer.resblocks.8.attn.in_proj",
|
25 |
+
"transformer.visual.transformer.resblocks.16.attn.in_proj",
|
26 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_proj",
|
27 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_proj",
|
28 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_proj",
|
29 |
+
"transformer.h.14.mlp.w2",
|
30 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_fc",
|
31 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_proj",
|
32 |
+
"transformer.h.0.attn.c_attn",
|
33 |
+
"transformer.visual.conv1",
|
34 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_fc",
|
35 |
+
"transformer.h.7.mlp.w2",
|
36 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_fc",
|
37 |
+
"transformer.visual.transformer.resblocks.17.attn.in_proj",
|
38 |
+
"transformer.h.29.attn.c_attn",
|
39 |
+
"transformer.h.3.attn.c_proj",
|
40 |
+
"transformer.visual.transformer.resblocks.0.attn.out_proj",
|
41 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_fc",
|
42 |
+
"transformer.h.30.attn.c_proj",
|
43 |
+
"transformer.h.3.mlp.w2",
|
44 |
+
"transformer.h.22.mlp.w1",
|
45 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_proj",
|
46 |
+
"transformer.h.11.mlp.c_proj",
|
47 |
+
"transformer.visual.transformer.resblocks.3.attn.in_proj",
|
48 |
+
"transformer.visual.transformer.resblocks.21.attn.out_proj",
|
49 |
+
"transformer.visual.transformer.resblocks.33.attn.out_proj",
|
50 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_fc",
|
51 |
+
"transformer.visual.transformer.resblocks.15.attn.in_proj",
|
52 |
+
"transformer.visual.transformer.resblocks.4.attn.out_proj",
|
53 |
+
"transformer.visual.transformer.resblocks.34.attn.in_proj",
|
54 |
+
"transformer.h.17.mlp.c_proj",
|
55 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_proj",
|
56 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_proj",
|
57 |
+
"transformer.visual.transformer.resblocks.39.attn.out_proj",
|
58 |
+
"transformer.h.13.mlp.c_proj",
|
59 |
+
"transformer.visual.transformer.resblocks.3.mlp.c_proj",
|
60 |
+
"transformer.visual.transformer.resblocks.22.attn.out_proj",
|
61 |
+
"transformer.h.27.attn.c_attn",
|
62 |
+
"transformer.visual.transformer.resblocks.47.attn.in_proj",
|
63 |
+
"transformer.h.1.mlp.c_proj",
|
64 |
+
"transformer.h.21.attn.c_attn",
|
65 |
+
"transformer.visual.transformer.resblocks.18.attn.out_proj",
|
66 |
+
"transformer.visual.transformer.resblocks.5.attn.in_proj",
|
67 |
+
"transformer.h.6.attn.c_proj",
|
68 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_fc",
|
69 |
+
"transformer.h.16.attn.c_attn",
|
70 |
+
"transformer.visual.transformer.resblocks.0.attn.in_proj",
|
71 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_fc",
|
72 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_proj",
|
73 |
+
"transformer.h.11.attn.c_attn",
|
74 |
+
"transformer.h.22.mlp.w2",
|
75 |
+
"transformer.h.8.mlp.w1",
|
76 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_proj",
|
77 |
+
"transformer.visual.transformer.resblocks.44.attn.out_proj",
|
78 |
+
"transformer.h.13.mlp.w2",
|
79 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_proj",
|
80 |
+
"transformer.visual.transformer.resblocks.27.attn.in_proj",
|
81 |
+
"transformer.h.29.mlp.w1",
|
82 |
+
"transformer.h.24.mlp.c_proj",
|
83 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_proj",
|
84 |
+
"transformer.visual.transformer.resblocks.4.attn.in_proj",
|
85 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_fc",
|
86 |
+
"transformer.h.28.mlp.w2",
|
87 |
+
"transformer.visual.transformer.resblocks.20.attn.in_proj",
|
88 |
+
"transformer.visual.transformer.resblocks.9.attn.in_proj",
|
89 |
+
"transformer.h.10.attn.c_proj",
|
90 |
+
"transformer.h.13.attn.c_proj",
|
91 |
+
"transformer.visual.transformer.resblocks.26.attn.in_proj",
|
92 |
+
"transformer.h.17.attn.c_attn",
|
93 |
+
"transformer.visual.transformer.resblocks.7.attn.in_proj",
|
94 |
+
"transformer.h.23.attn.c_proj",
|
95 |
+
"transformer.visual.transformer.resblocks.38.attn.in_proj",
|
96 |
+
"transformer.h.19.attn.c_attn",
|
97 |
+
"transformer.h.1.attn.c_proj",
|
98 |
+
"transformer.visual.transformer.resblocks.2.attn.in_proj",
|
99 |
+
"transformer.h.4.mlp.w2",
|
100 |
+
"transformer.h.15.mlp.c_proj",
|
101 |
+
"transformer.h.4.mlp.c_proj",
|
102 |
+
"transformer.h.19.mlp.w2",
|
103 |
+
"transformer.h.12.mlp.w1",
|
104 |
+
"transformer.visual.transformer.resblocks.30.attn.in_proj",
|
105 |
+
"transformer.visual.transformer.resblocks.9.attn.out_proj",
|
106 |
+
"transformer.h.28.mlp.c_proj",
|
107 |
+
"transformer.h.1.attn.c_attn",
|
108 |
+
"transformer.h.8.attn.c_proj",
|
109 |
+
"transformer.visual.transformer.resblocks.40.mlp.c_fc",
|
110 |
+
"transformer.visual.transformer.resblocks.25.attn.out_proj",
|
111 |
+
"transformer.h.4.mlp.w1",
|
112 |
+
"transformer.visual.transformer.resblocks.31.mlp.c_fc",
|
113 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_proj",
|
114 |
+
"transformer.visual.transformer.resblocks.33.attn.in_proj",
|
115 |
+
"transformer.h.0.mlp.w1",
|
116 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_proj",
|
117 |
+
"transformer.h.20.mlp.w2",
|
118 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_fc",
|
119 |
+
"transformer.visual.transformer.resblocks.43.attn.in_proj",
|
120 |
+
"transformer.visual.transformer.resblocks.37.attn.out_proj",
|
121 |
+
"transformer.h.25.mlp.w1",
|
122 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_proj",
|
123 |
+
"transformer.h.27.mlp.w2",
|
124 |
+
"transformer.visual.transformer.resblocks.47.attn.out_proj",
|
125 |
+
"transformer.visual.transformer.resblocks.18.attn.in_proj",
|
126 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_fc",
|
127 |
+
"transformer.visual.transformer.resblocks.11.attn.in_proj",
|
128 |
+
"transformer.h.14.mlp.c_proj",
|
129 |
+
"transformer.h.7.attn.c_attn",
|
130 |
+
"transformer.h.10.mlp.w2",
|
131 |
+
"transformer.h.11.mlp.w2",
|
132 |
+
"transformer.visual.transformer.resblocks.13.attn.out_proj",
|
133 |
+
"transformer.h.24.mlp.w1",
|
134 |
+
"transformer.h.0.mlp.c_proj",
|
135 |
+
"transformer.h.24.attn.c_proj",
|
136 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_fc",
|
137 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_proj",
|
138 |
+
"transformer.visual.transformer.resblocks.35.attn.in_proj",
|
139 |
+
"transformer.visual.transformer.resblocks.38.attn.out_proj",
|
140 |
+
"transformer.h.2.mlp.w2",
|
141 |
+
"transformer.visual.transformer.resblocks.40.attn.in_proj",
|
142 |
+
"transformer.h.25.mlp.w2",
|
143 |
+
"transformer.visual.transformer.resblocks.17.mlp.c_proj",
|
144 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_proj",
|
145 |
+
"transformer.h.2.attn.c_proj",
|
146 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_proj",
|
147 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_proj",
|
148 |
+
"transformer.visual.transformer.resblocks.2.attn.out_proj",
|
149 |
+
"transformer.h.16.mlp.w2",
|
150 |
+
"transformer.h.29.mlp.c_proj",
|
151 |
+
"transformer.visual.transformer.resblocks.21.attn.in_proj",
|
152 |
+
"transformer.visual.transformer.resblocks.7.mlp.c_fc",
|
153 |
+
"transformer.visual.transformer.resblocks.8.attn.out_proj",
|
154 |
+
"transformer.visual.transformer.resblocks.28.attn.in_proj",
|
155 |
+
"transformer.h.11.mlp.w1",
|
156 |
+
"transformer.visual.transformer.resblocks.41.mlp.c_fc",
|
157 |
+
"transformer.h.18.attn.c_proj",
|
158 |
+
"transformer.visual.transformer.resblocks.29.mlp.c_fc",
|
159 |
+
"transformer.visual.transformer.resblocks.32.mlp.c_proj",
|
160 |
+
"transformer.visual.transformer.resblocks.28.attn.out_proj",
|
161 |
+
"transformer.h.6.attn.c_attn",
|
162 |
+
"transformer.visual.transformer.resblocks.3.attn.out_proj",
|
163 |
+
"transformer.h.25.attn.c_attn",
|
164 |
+
"transformer.h.28.attn.c_proj",
|
165 |
+
"transformer.visual.transformer.resblocks.16.attn.out_proj",
|
166 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_proj",
|
167 |
+
"transformer.visual.transformer.resblocks.45.attn.in_proj",
|
168 |
+
"transformer.h.8.mlp.c_proj",
|
169 |
+
"transformer.visual.transformer.resblocks.29.attn.out_proj",
|
170 |
+
"transformer.h.27.mlp.c_proj",
|
171 |
+
"transformer.visual.transformer.resblocks.11.mlp.c_fc",
|
172 |
+
"transformer.visual.transformer.resblocks.11.attn.out_proj",
|
173 |
+
"transformer.visual.transformer.resblocks.10.attn.in_proj",
|
174 |
+
"transformer.visual.transformer.resblocks.27.mlp.c_fc",
|
175 |
+
"transformer.h.4.attn.c_proj",
|
176 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_fc",
|
177 |
+
"transformer.visual.transformer.resblocks.22.mlp.c_proj",
|
178 |
+
"transformer.h.22.attn.c_proj",
|
179 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_proj",
|
180 |
+
"transformer.h.22.mlp.c_proj",
|
181 |
+
"transformer.visual.transformer.resblocks.7.attn.out_proj",
|
182 |
+
"transformer.visual.transformer.resblocks.14.attn.out_proj",
|
183 |
+
"transformer.h.30.mlp.w1",
|
184 |
+
"transformer.h.14.attn.c_attn",
|
185 |
+
"transformer.h.4.attn.c_attn",
|
186 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_fc",
|
187 |
+
"transformer.visual.transformer.resblocks.27.attn.out_proj",
|
188 |
+
"transformer.visual.transformer.resblocks.41.attn.in_proj",
|
189 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_fc",
|
190 |
+
"transformer.h.12.attn.c_proj",
|
191 |
+
"transformer.visual.transformer.resblocks.32.attn.out_proj",
|
192 |
+
"transformer.visual.transformer.resblocks.18.mlp.c_fc",
|
193 |
+
"transformer.visual.transformer.resblocks.45.attn.out_proj",
|
194 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_proj",
|
195 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_proj",
|
196 |
+
"transformer.visual.transformer.resblocks.20.attn.out_proj",
|
197 |
+
"transformer.visual.transformer.resblocks.19.attn.in_proj",
|
198 |
+
"transformer.h.17.mlp.w2",
|
199 |
+
"transformer.h.10.attn.c_attn",
|
200 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_proj",
|
201 |
+
"transformer.visual.transformer.resblocks.39.mlp.c_proj",
|
202 |
+
"transformer.h.7.mlp.w1",
|
203 |
+
"transformer.h.14.mlp.w1",
|
204 |
+
"transformer.visual.transformer.resblocks.2.mlp.c_fc",
|
205 |
+
"transformer.h.21.mlp.w1",
|
206 |
+
"transformer.visual.transformer.resblocks.30.attn.out_proj",
|
207 |
+
"transformer.h.19.mlp.c_proj",
|
208 |
+
"transformer.h.5.mlp.w1",
|
209 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_fc",
|
210 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_fc",
|
211 |
+
"transformer.h.10.mlp.c_proj",
|
212 |
+
"transformer.visual.transformer.resblocks.28.mlp.c_proj",
|
213 |
+
"transformer.visual.transformer.resblocks.25.attn.in_proj",
|
214 |
+
"transformer.h.9.attn.c_attn",
|
215 |
+
"transformer.visual.transformer.resblocks.0.mlp.c_fc",
|
216 |
+
"transformer.h.29.attn.c_proj",
|
217 |
+
"transformer.h.5.mlp.w2",
|
218 |
+
"transformer.h.30.attn.c_attn",
|
219 |
+
"transformer.h.1.mlp.w1",
|
220 |
+
"transformer.visual.transformer.resblocks.8.mlp.c_fc",
|
221 |
+
"transformer.h.19.mlp.w1",
|
222 |
+
"transformer.h.18.attn.c_attn",
|
223 |
+
"transformer.h.11.attn.c_proj",
|
224 |
+
"transformer.h.5.mlp.c_proj",
|
225 |
+
"transformer.visual.transformer.resblocks.45.mlp.c_fc",
|
226 |
+
"transformer.visual.transformer.resblocks.47.mlp.c_proj",
|
227 |
+
"transformer.h.9.attn.c_proj",
|
228 |
+
"transformer.visual.transformer.resblocks.6.attn.out_proj",
|
229 |
+
"transformer.h.26.mlp.c_proj",
|
230 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_proj",
|
231 |
+
"transformer.h.31.attn.c_attn",
|
232 |
+
"transformer.h.13.mlp.w1",
|
233 |
+
"transformer.visual.transformer.resblocks.39.attn.in_proj",
|
234 |
+
"transformer.h.20.mlp.w1",
|
235 |
+
"transformer.visual.transformer.resblocks.22.attn.in_proj",
|
236 |
+
"transformer.visual.transformer.resblocks.35.mlp.c_fc",
|
237 |
+
"transformer.visual.transformer.resblocks.24.attn.in_proj",
|
238 |
+
"transformer.h.16.mlp.w1",
|
239 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_proj",
|
240 |
+
"transformer.h.6.mlp.c_proj",
|
241 |
+
"transformer.visual.transformer.resblocks.26.mlp.c_proj",
|
242 |
+
"transformer.visual.transformer.resblocks.35.attn.out_proj",
|
243 |
+
"transformer.h.24.mlp.w2",
|
244 |
+
"transformer.visual.transformer.resblocks.31.attn.in_proj",
|
245 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_fc",
|
246 |
+
"transformer.h.2.mlp.w1",
|
247 |
+
"transformer.h.31.mlp.c_proj",
|
248 |
+
"transformer.h.13.attn.c_attn",
|
249 |
+
"transformer.visual.transformer.resblocks.14.attn.in_proj",
|
250 |
+
"transformer.h.12.mlp.w2",
|
251 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_proj",
|
252 |
+
"transformer.h.26.mlp.w2",
|
253 |
+
"transformer.visual.transformer.resblocks.5.mlp.c_fc",
|
254 |
+
"transformer.h.5.attn.c_proj",
|
255 |
+
"transformer.h.9.mlp.w2",
|
256 |
+
"transformer.h.15.mlp.w2",
|
257 |
+
"transformer.h.12.attn.c_attn",
|
258 |
+
"transformer.visual.transformer.resblocks.10.mlp.c_proj",
|
259 |
+
"transformer.h.28.mlp.w1",
|
260 |
+
"transformer.visual.transformer.resblocks.46.attn.out_proj",
|
261 |
+
"transformer.h.18.mlp.c_proj",
|
262 |
+
"transformer.h.15.attn.c_proj",
|
263 |
+
"transformer.visual.transformer.resblocks.44.attn.in_proj",
|
264 |
+
"transformer.visual.transformer.resblocks.12.attn.out_proj",
|
265 |
+
"transformer.visual.transformer.resblocks.1.mlp.c_fc",
|
266 |
+
"transformer.visual.transformer.resblocks.15.attn.out_proj",
|
267 |
+
"transformer.h.17.mlp.w1",
|
268 |
+
"transformer.visual.transformer.resblocks.46.attn.in_proj",
|
269 |
+
"transformer.h.2.attn.c_attn",
|
270 |
+
"transformer.h.25.attn.c_proj",
|
271 |
+
"transformer.h.14.attn.c_proj",
|
272 |
+
"transformer.h.26.attn.c_proj",
|
273 |
+
"transformer.h.31.mlp.w1",
|
274 |
+
"transformer.h.23.mlp.w2",
|
275 |
+
"transformer.visual.transformer.resblocks.26.attn.out_proj",
|
276 |
+
"transformer.h.20.mlp.c_proj",
|
277 |
+
"transformer.visual.transformer.resblocks.6.mlp.c_fc",
|
278 |
+
"transformer.h.27.mlp.w1",
|
279 |
+
"transformer.h.7.attn.c_proj",
|
280 |
+
"transformer.visual.transformer.resblocks.15.mlp.c_proj",
|
281 |
+
"transformer.h.16.mlp.c_proj",
|
282 |
+
"transformer.visual.transformer.resblocks.12.mlp.c_proj",
|
283 |
+
"transformer.h.29.mlp.w2",
|
284 |
+
"transformer.h.15.mlp.w1",
|
285 |
+
"transformer.h.6.mlp.w2",
|
286 |
+
"transformer.h.3.attn.c_attn",
|
287 |
+
"transformer.h.21.mlp.w2",
|
288 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_fc",
|
289 |
+
"transformer.visual.transformer.resblocks.23.mlp.c_fc",
|
290 |
+
"transformer.visual.transformer.resblocks.34.attn.out_proj",
|
291 |
+
"transformer.h.8.attn.c_attn",
|
292 |
+
"transformer.visual.transformer.resblocks.43.mlp.c_proj",
|
293 |
+
"transformer.visual.transformer.resblocks.14.mlp.c_fc",
|
294 |
+
"transformer.visual.transformer.resblocks.24.attn.out_proj",
|
295 |
+
"transformer.visual.transformer.resblocks.12.attn.in_proj",
|
296 |
+
"transformer.h.25.mlp.c_proj",
|
297 |
+
"transformer.visual.transformer.resblocks.46.mlp.c_proj",
|
298 |
+
"transformer.h.7.mlp.c_proj",
|
299 |
+
"transformer.h.15.attn.c_attn",
|
300 |
+
"transformer.visual.transformer.resblocks.36.attn.in_proj",
|
301 |
+
"transformer.h.26.attn.c_attn",
|
302 |
+
"transformer.h.0.attn.c_proj",
|
303 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_fc",
|
304 |
+
"transformer.h.19.attn.c_proj",
|
305 |
+
"transformer.visual.transformer.resblocks.29.attn.in_proj",
|
306 |
+
"transformer.visual.transformer.resblocks.13.attn.in_proj",
|
307 |
+
"transformer.visual.transformer.resblocks.23.attn.in_proj",
|
308 |
+
"transformer.visual.transformer.resblocks.36.attn.out_proj",
|
309 |
+
"transformer.h.3.mlp.c_proj",
|
310 |
+
"transformer.h.27.attn.c_proj",
|
311 |
+
"transformer.h.31.attn.c_proj",
|
312 |
+
"transformer.visual.transformer.resblocks.19.attn.out_proj",
|
313 |
+
"transformer.h.0.mlp.w2",
|
314 |
+
"transformer.h.17.attn.c_proj",
|
315 |
+
"transformer.h.30.mlp.w2",
|
316 |
+
"transformer.visual.transformer.resblocks.24.mlp.c_fc",
|
317 |
+
"transformer.h.28.attn.c_attn",
|
318 |
+
"transformer.visual.transformer.resblocks.16.mlp.c_proj",
|
319 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_fc",
|
320 |
+
"transformer.h.30.mlp.c_proj",
|
321 |
+
"transformer.visual.transformer.resblocks.37.attn.in_proj",
|
322 |
+
"transformer.visual.transformer.resblocks.20.mlp.c_fc",
|
323 |
+
"transformer.h.9.mlp.c_proj",
|
324 |
+
"transformer.visual.transformer.resblocks.43.attn.out_proj",
|
325 |
+
"transformer.visual.transformer.resblocks.42.attn.in_proj",
|
326 |
+
"transformer.h.1.mlp.w2",
|
327 |
+
"transformer.h.6.mlp.w1",
|
328 |
+
"transformer.visual.transformer.resblocks.17.attn.out_proj",
|
329 |
+
"transformer.visual.transformer.resblocks.33.mlp.c_fc",
|
330 |
+
"transformer.h.5.attn.c_attn",
|
331 |
+
"transformer.h.8.mlp.w2",
|
332 |
+
"transformer.h.23.mlp.c_proj",
|
333 |
+
"transformer.h.20.attn.c_attn",
|
334 |
+
"transformer.visual.transformer.resblocks.4.mlp.c_fc",
|
335 |
+
"transformer.h.31.mlp.w2",
|
336 |
+
"transformer.h.9.mlp.w1",
|
337 |
+
"transformer.h.12.mlp.c_proj",
|
338 |
+
"transformer.visual.transformer.resblocks.1.attn.out_proj",
|
339 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_fc",
|
340 |
+
"transformer.visual.transformer.resblocks.1.attn.in_proj",
|
341 |
+
"transformer.visual.transformer.resblocks.32.attn.in_proj",
|
342 |
+
"transformer.h.16.attn.c_proj",
|
343 |
+
"transformer.visual.transformer.resblocks.42.mlp.c_proj",
|
344 |
+
"transformer.h.3.mlp.w1",
|
345 |
+
"transformer.visual.transformer.resblocks.9.mlp.c_proj",
|
346 |
+
"transformer.h.18.mlp.w1",
|
347 |
+
"transformer.visual.transformer.resblocks.44.mlp.c_fc",
|
348 |
+
"transformer.h.21.mlp.c_proj",
|
349 |
+
"transformer.visual.transformer.resblocks.5.attn.out_proj",
|
350 |
+
"transformer.visual.transformer.resblocks.34.mlp.c_fc",
|
351 |
+
"transformer.visual.transformer.resblocks.42.attn.out_proj",
|
352 |
+
"transformer.visual.transformer.resblocks.41.attn.out_proj",
|
353 |
+
"transformer.h.10.mlp.w1",
|
354 |
+
"transformer.visual.transformer.resblocks.19.mlp.c_fc",
|
355 |
+
"transformer.visual.transformer.resblocks.13.mlp.c_proj",
|
356 |
+
"transformer.h.21.attn.c_proj",
|
357 |
+
"transformer.visual.transformer.resblocks.6.attn.in_proj",
|
358 |
+
"transformer.visual.transformer.resblocks.23.attn.out_proj",
|
359 |
+
"transformer.visual.transformer.resblocks.40.attn.out_proj",
|
360 |
+
"transformer.visual.transformer.resblocks.36.mlp.c_proj",
|
361 |
+
"transformer.h.2.mlp.c_proj",
|
362 |
+
"transformer.visual.transformer.resblocks.25.mlp.c_fc",
|
363 |
+
"transformer.h.22.attn.c_attn",
|
364 |
+
"transformer.h.23.mlp.w1",
|
365 |
+
"transformer.h.20.attn.c_proj",
|
366 |
+
"transformer.h.23.attn.c_attn",
|
367 |
+
"transformer.visual.transformer.resblocks.37.mlp.c_proj",
|
368 |
+
"transformer.h.26.mlp.w1",
|
369 |
+
"transformer.h.18.mlp.w2",
|
370 |
+
"transformer.visual.transformer.resblocks.21.mlp.c_proj",
|
371 |
+
"transformer.visual.transformer.resblocks.31.attn.out_proj",
|
372 |
+
"transformer.h.24.attn.c_attn",
|
373 |
+
"transformer.visual.transformer.resblocks.10.attn.out_proj",
|
374 |
+
"transformer.visual.transformer.resblocks.30.mlp.c_proj",
|
375 |
+
"transformer.visual.transformer.resblocks.38.mlp.c_proj"
|
376 |
+
],
|
377 |
+
"task_type": "CAUSAL_LM",
|
378 |
+
"use_dora": false,
|
379 |
+
"use_rslora": false
|
380 |
+
}
|
checkpoint-2400/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d40094c4c9fa083f14d64ac21a5ff6f46bc59cf112308f9b3afc06a3c3ae11ec
|
3 |
+
size 469105640
|
checkpoint-2400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2400
|
checkpoint-2400/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|