--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 0.6569451876767831 --- # wav2vec2-large-xlsr-hindi This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9008 - Wer: 0.6569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 7.774 | 1.3605 | 200 | 3.5057 | 1.0 | | 2.6507 | 2.7211 | 400 | 1.2937 | 0.8401 | | 0.7129 | 4.0816 | 600 | 0.9775 | 0.7138 | | 0.4318 | 5.4422 | 800 | 0.9152 | 0.6752 | | 0.3234 | 6.8027 | 1000 | 0.9008 | 0.6569 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1