File size: 3,739 Bytes
cecc8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-finetuned-abbr-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-finetuned-abbr-finetuned-ner

This model is a fine-tuned version of [surrey-nlp/roberta-large-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1392
- Precision: 0.9699
- Recall: 0.9660
- F1: 0.9679
- Accuracy: 0.9645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1169        | 0.25  | 7000   | 0.1114          | 0.9639    | 0.9581 | 0.9610 | 0.9575   |
| 0.1171        | 0.5   | 14000  | 0.1150          | 0.9655    | 0.9534 | 0.9594 | 0.9554   |
| 0.1202        | 0.75  | 21000  | 0.1058          | 0.9644    | 0.9578 | 0.9611 | 0.9575   |
| 0.1105        | 0.99  | 28000  | 0.1098          | 0.9664    | 0.9549 | 0.9606 | 0.9566   |
| 0.0935        | 1.24  | 35000  | 0.1270          | 0.9643    | 0.9570 | 0.9606 | 0.9570   |
| 0.0999        | 1.49  | 42000  | 0.1112          | 0.9626    | 0.9605 | 0.9615 | 0.9580   |
| 0.0948        | 1.74  | 49000  | 0.1114          | 0.9670    | 0.9606 | 0.9638 | 0.9603   |
| 0.1015        | 1.99  | 56000  | 0.1146          | 0.9680    | 0.9589 | 0.9634 | 0.9597   |
| 0.0816        | 2.24  | 63000  | 0.1244          | 0.9670    | 0.9607 | 0.9638 | 0.9603   |
| 0.0855        | 2.49  | 70000  | 0.1107          | 0.9675    | 0.9623 | 0.9649 | 0.9614   |
| 0.0814        | 2.73  | 77000  | 0.1047          | 0.9661    | 0.9630 | 0.9645 | 0.9611   |
| 0.0827        | 2.98  | 84000  | 0.1082          | 0.9665    | 0.9631 | 0.9648 | 0.9614   |
| 0.0655        | 3.23  | 91000  | 0.1485          | 0.9690    | 0.9615 | 0.9653 | 0.9618   |
| 0.0631        | 3.48  | 98000  | 0.1314          | 0.9683    | 0.9639 | 0.9661 | 0.9627   |
| 0.0667        | 3.73  | 105000 | 0.1164          | 0.9683    | 0.9643 | 0.9663 | 0.9629   |
| 0.0652        | 3.98  | 112000 | 0.1297          | 0.9681    | 0.9653 | 0.9667 | 0.9633   |
| 0.0485        | 4.23  | 119000 | 0.1441          | 0.9697    | 0.9645 | 0.9671 | 0.9636   |
| 0.0505        | 4.47  | 126000 | 0.1350          | 0.9700    | 0.9651 | 0.9675 | 0.9642   |
| 0.0498        | 4.72  | 133000 | 0.1243          | 0.9691    | 0.9657 | 0.9674 | 0.9640   |
| 0.0463        | 4.97  | 140000 | 0.1392          | 0.9699    | 0.9660 | 0.9679 | 0.9645   |
| 0.0371        | 5.22  | 147000 | 0.1527          | 0.9709    | 0.9658 | 0.9683 | 0.9649   |
| 0.0363        | 5.47  | 154000 | 0.1490          | 0.9703    | 0.9667 | 0.9685 | 0.9651   |
| 0.0341        | 5.72  | 161000 | 0.1538          | 0.9712    | 0.9666 | 0.9689 | 0.9656   |
| 0.0338        | 5.97  | 168000 | 0.1488          | 0.9705    | 0.9668 | 0.9687 | 0.9653   |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.10.3