--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: xlsr-a-nose results: [] --- # xlsr-a-nose This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3950 - Wer: 0.3216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 4.473 | 2.7027 | 200 | 2.4188 | 1.0 | | 1.3356 | 5.4054 | 400 | 0.2886 | 0.5197 | | 0.1766 | 8.1081 | 600 | 0.3087 | 0.3930 | | 0.0958 | 10.8108 | 800 | 0.2624 | 0.3323 | | 0.0596 | 13.5135 | 1000 | 0.3792 | 0.3440 | | 0.0461 | 16.2162 | 1200 | 0.3037 | 0.3365 | | 0.0352 | 18.9189 | 1400 | 0.3387 | 0.3387 | | 0.0227 | 21.6216 | 1600 | 0.3182 | 0.3387 | | 0.0243 | 24.3243 | 1800 | 0.3493 | 0.3450 | | 0.0224 | 27.0270 | 2000 | 0.3503 | 0.3312 | | 0.0145 | 29.7297 | 2200 | 0.3551 | 0.3301 | | 0.0205 | 32.4324 | 2400 | 0.3310 | 0.3514 | | 0.0126 | 35.1351 | 2600 | 0.3741 | 0.3323 | | 0.0137 | 37.8378 | 2800 | 0.3761 | 0.3323 | | 0.014 | 40.5405 | 3000 | 0.3646 | 0.3355 | | 0.0096 | 43.2432 | 3200 | 0.3660 | 0.3301 | | 0.0099 | 45.9459 | 3400 | 0.3745 | 0.3312 | | 0.0121 | 48.6486 | 3600 | 0.3930 | 0.3291 | | 0.0131 | 51.3514 | 3800 | 0.3886 | 0.3280 | | 0.0095 | 54.0541 | 4000 | 0.3874 | 0.3450 | | 0.0066 | 56.7568 | 4200 | 0.3877 | 0.3269 | | 0.0047 | 59.4595 | 4400 | 0.3871 | 0.3248 | | 0.0074 | 62.1622 | 4600 | 0.3886 | 0.3259 | | 0.0068 | 64.8649 | 4800 | 0.4206 | 0.3259 | | 0.005 | 67.5676 | 5000 | 0.4182 | 0.3227 | | 0.0087 | 70.2703 | 5200 | 0.4100 | 0.3248 | | 0.0047 | 72.9730 | 5400 | 0.4196 | 0.3259 | | 0.0056 | 75.6757 | 5600 | 0.4133 | 0.3259 | | 0.0048 | 78.3784 | 5800 | 0.4135 | 0.3269 | | 0.0036 | 81.0811 | 6000 | 0.3901 | 0.3248 | | 0.003 | 83.7838 | 6200 | 0.3869 | 0.3227 | | 0.0021 | 86.4865 | 6400 | 0.3896 | 0.3227 | | 0.0013 | 89.1892 | 6600 | 0.3893 | 0.3216 | | 0.0019 | 91.8919 | 6800 | 0.3983 | 0.3216 | | 0.0015 | 94.5946 | 7000 | 0.4023 | 0.3227 | | 0.0013 | 97.2973 | 7200 | 0.3973 | 0.3227 | | 0.0017 | 100.0 | 7400 | 0.3950 | 0.3216 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0