File size: 2,778 Bytes
1434fb9
 
9ea75b1
 
 
 
 
 
 
 
 
1434fb9
 
9ea75b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: xlsr-nm-clp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlsr-nm-clp

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3632
- Wer: 0.5241

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 5.0552        | 4.8780  | 200  | 3.0646          | 1.0    |
| 3.0248        | 9.7561  | 400  | 2.9305          | 1.0    |
| 2.8381        | 14.6341 | 600  | 2.7349          | 1.0    |
| 2.2963        | 19.5122 | 800  | 1.9857          | 0.9550 |
| 1.3557        | 24.3902 | 1000 | 1.3196          | 0.7685 |
| 0.6411        | 29.2683 | 1200 | 1.3063          | 0.6881 |
| 0.394         | 34.1463 | 1400 | 1.2477          | 0.6527 |
| 0.2608        | 39.0244 | 1600 | 1.1584          | 0.6013 |
| 0.1804        | 43.9024 | 1800 | 1.2374          | 0.6013 |
| 0.1442        | 48.7805 | 2000 | 1.3478          | 0.5643 |
| 0.1264        | 53.6585 | 2200 | 1.2854          | 0.5740 |
| 0.0892        | 58.5366 | 2400 | 1.2293          | 0.5900 |
| 0.0813        | 63.4146 | 2600 | 1.2025          | 0.5482 |
| 0.0597        | 68.2927 | 2800 | 1.3339          | 0.5466 |
| 0.0495        | 73.1707 | 3000 | 1.4527          | 0.5595 |
| 0.0453        | 78.0488 | 3200 | 1.4188          | 0.5257 |
| 0.0402        | 82.9268 | 3400 | 1.2740          | 0.5289 |
| 0.0367        | 87.8049 | 3600 | 1.3237          | 0.5161 |
| 0.0324        | 92.6829 | 3800 | 1.3321          | 0.5177 |
| 0.0267        | 97.5610 | 4000 | 1.3632          | 0.5241 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0