suzii commited on
Commit
5128dd8
·
verified ·
1 Parent(s): e632286

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -27
README.md CHANGED
@@ -73,33 +73,33 @@ The model used in this project is the **Whisper-V3-Turbo**. Whisper is a multili
73
 
74
  To use the fine-tuned model, follow the steps below:
75
 
76
- ```python
77
- import torch
78
- from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
79
-
80
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
81
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
82
-
83
- model_id = "suzii/vi-whisper-large-v3-turbo-v1"
84
-
85
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
86
- model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
87
- )
88
- model.to(device)
89
-
90
- processor = AutoProcessor.from_pretrained(model_id)
91
-
92
- pipe = pipeline(
93
- "automatic-speech-recognition",
94
- model=model,
95
- tokenizer=processor.tokenizer,
96
- feature_extractor=processor.feature_extractor,
97
- torch_dtype=torch_dtype,
98
- device=device,
99
- )
100
- result = pipe("your-audio.mp3", return_timestamps=True)
101
-
102
- ```
103
 
104
  ## Acknowledgements
105
 
 
73
 
74
  To use the fine-tuned model, follow the steps below:
75
 
76
+ ```python
77
+ import torch
78
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
79
+
80
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
81
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
82
+
83
+ model_id = "suzii/vi-whisper-large-v3-turbo-v1"
84
+
85
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
86
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
87
+ )
88
+ model.to(device)
89
+
90
+ processor = AutoProcessor.from_pretrained(model_id)
91
+
92
+ pipe = pipeline(
93
+ "automatic-speech-recognition",
94
+ model=model,
95
+ tokenizer=processor.tokenizer,
96
+ feature_extractor=processor.feature_extractor,
97
+ torch_dtype=torch_dtype,
98
+ device=device,
99
+ )
100
+ result = pipe("your-audio.mp3", return_timestamps=True)
101
+
102
+ ```
103
 
104
  ## Acknowledgements
105