ppo-LunarLander-v2 / config.json
svetaU's picture
Model for unit1
80feeef verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cba9ca34820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cba9ca348b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cba9ca34940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cba9ca349d0>", "_build": "<function ActorCriticPolicy._build at 0x7cba9ca34a60>", "forward": "<function ActorCriticPolicy.forward at 0x7cba9ca34af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cba9ca34b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cba9ca34c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7cba9ca34ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cba9ca34d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cba9ca34dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cba9ca34e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cba9c9d8e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726691785147940157, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYghL1Ij4W6Ozt9OvqTbjXo97o6m7STuQAAgD8AAIA/c7DTPTngNj5WyEW96Uc7vmkkLT0liu88AAAAAAAAAACaEPc8jwIpusuBxDletI00vMYnuy5U47gAAIA/AACAPw3ruD2PLlS6BvHQOiTJqTWULs+6K+H1uQAAAAAAAIA/TaSGPQqjPbv8f5G7FJmMPDuXozxFZXG9AACAPwAAgD/NsHQ9PXkUu9IQrb2M2++9D/Kyu8W+074AAIA/AACAP+C3IT6ggVQ/W/h1vS3Zmb6LH/084EnfvAAAAAAAAAAAQ5C2vkfgND9uk9y9W0ljvuZgcL5ERq49AAAAAAAAAAANACg+WSyRPsyRGL7bIHG+uV0gPZAfDb0AAAAAAAAAAEA1hj2Pfjq6IZQXPDzPVDZRqrG6moZNNQAAAAAAAAAAmoqVvBzpQz+OXLi7XQaWvjGV1LzuUdg8AAAAAAAAAADzfxy+vBDRPjA2PT7jaIK+AlvNPNpJzr0AAAAAAAAAAECtHj64K4Q+TRnRvO3ZV77jCPo8qnnzvQAAAAAAAAAApksZvrcBDT/zPWI+A09avkgy2bw9k6I9AAAAAAAAAACGjTo+lBmMvMM0GLlGCqA3FK7vvW5VQjgAAIA/AACAP1rQOT5bcpC8G4r5O6nVa7ryRAC+p/I7uwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7KeBg/keaMAWyUTTYBjAF0lEdAkalXwkPcz3V9lChoBkdAbJPtXPqs2mgHTV8BaAhHQJGq52NedCp1fZQoaAZHQG66cCHRCyBoB01LAWgIR0CRrPGyX2M9dX2UKGgGR0BvebyrgflqaAdNSgFoCEdAka6SApazNXV9lChoBkdAbsK2ZRbbDmgHTWIBaAhHQJGv7AoG6f91fZQoaAZHQHIcwKrq+rVoB01AAWgIR0CRsF9y925hdX2UKGgGR0Bvn7nied08aAdNugJoCEdAkbEFQdjoZHV9lChoBkdAbs4ScslLOGgHTV0BaAhHQJGxfkxREWt1fZQoaAZHQG4wi1Z1V5toB01bAWgIR0CRssbobGWEdX2UKGgGR0BvS5d6cAinaAdNPAFoCEdAkbLwmReTmnV9lChoBkdAcNR668QI2WgHTTMBaAhHQJGzt/QSi/R1fZQoaAZHQHBVtDQZ4wBoB00jAmgIR0CRtBSAYpDvdX2UKGgGR0BzAkOLBKtgaAdNQQFoCEdAkbRcx0uDjHV9lChoBkdAa4mz67/XG2gHTU4BaAhHQJG1Bi2Dxsl1fZQoaAZHQHKKPShJyyVoB01JAWgIR0CRtQHFPznSdX2UKGgGR0BynK02LpA2aAdNTQFoCEdAkbUr+1jRUnV9lChoBkdAcAHxX4j8k2gHTUIBaAhHQJHI53IMjNZ1fZQoaAZHQFqZkWykbgloB03oA2gIR0CRyPpmmLtNdX2UKGgGR0Bw153np0OmaAdNHQFoCEdAkckRaC+UQnV9lChoBkdAb88TmnwXqWgHTW4BaAhHQJHNj6yjYZl1fZQoaAZHQHDKTGDL8rJoB01TAWgIR0CRzaZgogFHdX2UKGgGR0ByltlSS/0vaAdNcgFoCEdAkc5WaYu01XV9lChoBkdAcHggV45cT2gHTV8BaAhHQJHOzoq0+kh1fZQoaAZHQHF7e9WZJCloB01IAWgIR0CRzz0m+j/NdX2UKGgGR0Bwal9srNGFaAdNWQFoCEdAkdAc1fmcOXV9lChoBkdAcF7OCXhOxmgHTTwBaAhHQJHQTFHavid1fZQoaAZHQHAXUnw5NoJoB00gAWgIR0CR0GJwbVBldX2UKGgGR0BxGy1MM7U5aAdNPgFoCEdAkdFjposZpHV9lChoBkdAci5WTHKfWmgHTVUBaAhHQJHRfnzQNTd1fZQoaAZHQHEGIMBp5/toB02MAmgIR0CR09qVhTfjdX2UKGgGR0BtTuiDdxhlaAdNtQFoCEdAkdT4/mknC3V9lChoBkdAbgPQBxPweGgHTV8BaAhHQJHXkEdNnGt1fZQoaAZHQHDDCsKb8WNoB03MAWgIR0CR2DurZJ05dX2UKGgGR0BuS1KAavRraAdNjAFoCEdAkdoFI/Z/TnV9lChoBkdAcIKY7JW/8GgHTZkBaAhHQJHag7A+IM11fZQoaAZHQHGkUMb3oLZoB00rAWgIR0CR2vwSamXPdX2UKGgGR0Bt1x51Ng0CaAdNMgFoCEdAkdtv/aQFLXV9lChoBkdAcWNG4I8hcWgHTS0BaAhHQJHc1cfNiYt1fZQoaAZHQHD60IgNgBtoB00lAWgIR0CR3X5/LDAKdX2UKGgGR0Bs825+YtxuaAdNZgFoCEdAkd5lNlAeJnV9lChoBkdAcg2fOlfqo2gHTS8BaAhHQJHfUf4h2W91fZQoaAZHQHFZ/P5YYBNoB00ZAWgIR0CR4Fn5i3G5dX2UKGgGR0Bw7wbGWD6FaAdNXAFoCEdAkeDb3fyf+XV9lChoBkdAb3RDLKV6eGgHTbgBaAhHQJHhp5prULF1fZQoaAZHQHHQIwAU+LZoB01qAWgIR0CR5EtBfKISdX2UKGgGR0BvLGC5EtulaAdN2QFoCEdAkeRrXpW3jXV9lChoBkdAcLFABDG96GgHTUMBaAhHQJHk7xgAp8Z1fZQoaAZHQHC15eeFtbdoB00vAWgIR0CR5sbrC3w1dX2UKGgGR0Bxhw8A7xNJaAdNbgFoCEdAkecV6AvtdHV9lChoBkdAbOVN8ma6SWgHTTQBaAhHQJHnUBV+7UZ1fZQoaAZHQHGMh7E5yU9oB01RAWgIR0CR575p8F6idX2UKGgGR0BwVmW4Vh1DaAdNcAFoCEdAkeh2ZVn27HV9lChoBkdAcT4QMhHLBGgHTT4BaAhHQJHovcRDkU91fZQoaAZHQHJZM/Y8Md9oB00pAWgIR0CR6hZmZmZmdX2UKGgGR0BwspIlMRHxaAdNNQFoCEdAkeuQ5/9YOnV9lChoBkdAcS3RoysS02gHTYwBaAhHQJHsreLvTgF1fZQoaAZHQHDEhUrCm/FoB01GAWgIR0CR7K6PKdQPdX2UKGgGR0Bu7/fXPJJYaAdNxgFoCEdAke3wood+5XV9lChoBkdAcFVzIV/MGGgHTWwBaAhHQJHuv8FY+0R1fZQoaAZHQHGrD+WGATZoB00wAWgIR0CR7yxKxs2vdX2UKGgGR0BxjhItlI3BaAdNLgFoCEdAke+Vo+Ofd3V9lChoBkdAb2BVXFLnLmgHTTsBaAhHQJIC75M10kp1fZQoaAZHQHGgAnDziCJoB01AAWgIR0CSA9jbBXS0dX2UKGgGR0Bt38dvKlpHaAdNYwFoCEdAkgT23vx6OnV9lChoBkdAcNsSDyvs7mgHTT0BaAhHQJIFD+dbxEx1fZQoaAZHQHHWfeYUnG9oB01LAWgIR0CSBUTyauwHdX2UKGgGR0BwOnsmfGuLaAdNNgFoCEdAkgZ7q6e5F3V9lChoBkdAcOX+cH4XXWgHTakBaAhHQJIHdMVUMod1fZQoaAZHQFhjcKPXCj1oB03oA2gIR0CSCU5ftx+8dX2UKGgGR0BwuTPGACnxaAdNKAFoCEdAkglpMURFqnV9lChoBkdAboFCP6sQumgHTUABaAhHQJIKcM4LkS51fZQoaAZHQG/JgdOqNqBoB01kAWgIR0CSCqbqyGBXdX2UKGgGR0BzRJkWhysCaAdNPQFoCEdAkg19zOoo/nV9lChoBkdAbwWlnh86WGgHTXECaAhHQJINifSQYDV1fZQoaAZHQHDJV/pdKNBoB01oAWgIR0CSDcHM2WIHdX2UKGgGR0BxbK2sq8UVaAdNPQFoCEdAkg4AarFOwnV9lChoBkdAco1mplz2e2gHTXoBaAhHQJIPVTNt65Z1fZQoaAZHQG2ZZE+gUURoB00pAWgIR0CSEimfGuLadX2UKGgGR0Bw786BAfMfaAdNYgFoCEdAkhNoPwuuinV9lChoBkdAbIjhd+ocaWgHTUkBaAhHQJITp89fTkR1fZQoaAZHQHEhazRhMJxoB01pAWgIR0CSFe08eS0TdX2UKGgGR0BwiVnoPkJbaAdNGwFoCEdAkhYVgc94eXV9lChoBkdAbl3riVB2OmgHTZQBaAhHQJIWJ1Tzd1x1fZQoaAZHQG0odfCyhSNoB01QAWgIR0CSFw8b70nPdX2UKGgGR0BwTd49ovi+aAdNDgFoCEdAkhh2BBiTdXV9lChoBkdAcf3lv60pmWgHTS8BaAhHQJIZPRx95Qh1fZQoaAZHQHJgTAFgUlBoB00+AWgIR0CSGemICU5ddX2UKGgGR0BwKNs54nndaAdNzQFoCEdAkhoPalDWsnV9lChoBkdAcN4AfMfRu2gHTSsBaAhHQJIc4wCbMHN1fZQoaAZHQHLuWnn+yZ9oB02HAWgIR0CSHgovBacJdX2UKGgGR0ByHJ/ZuhsZaAdNQwFoCEdAkh8BsANoanV9lChoBkdAcbUK6nR9gGgHTewBaAhHQJIgHiDM/yJ1fZQoaAZHQHHD9fG+9J1oB01kAmgIR0CSInqMWGh3dX2UKGgGR0BwofPHDJlraAdNTwFoCEdAkiKCM98qnXV9lChoBkdAcd0t+CsfaGgHTWoBaAhHQJIjYxtYSxt1fZQoaAZHQGxOEZBLPD5oB01xAWgIR0CSI+XuE25ydX2UKGgGR0BvbfO2RaHLaAdN0gFoCEdAkiUISlFc6nV9lChoBkdAcWeQpWmxdWgHTXYBaAhHQJIlGT2WY4R1fZQoaAZHQG3pA6dUbUBoB006AWgIR0CSJfuMdcSodX2UKGgGR0BxZd6PbO/taAdNXQFoCEdAkiZYFqzqr3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}