File size: 1,468 Bytes
bf22769
 
 
 
 
 
 
 
 
acc05cf
bf22769
 
 
 
 
 
 
 
 
acc05cf
 
 
 
 
 
 
 
 
 
 
bf22769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953fe43
bf22769
 
 
 
953fe43
bf22769
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: vit-base-patch16-224-in21k_covid_19_ct_scans
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k_covid_19_ct_scans

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2255
- eval_accuracy: 0.9671
- eval_F1: 0.9163
- eval_AUC: 0.8704
- eval_Recall: 1.0
- eval_Precision: 0.9637
- eval_runtime: 4.1611
- eval_samples_per_second: 51.189
- eval_steps_per_second: 3.365
- epoch: 20.0
- step: 1080

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Framework versions

- Transformers 4.41.1
- Pytorch 2.0.0+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1