Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: openai/clip-vit-large-patch14-336
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-emnist-letter
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# clip-vit-large-patch14-336-finetuned-openai-clip-vit-large-patch14-336-emnist-letter
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [openai/clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1417
|
21 |
+
- Accuracy: 0.9489
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 10
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.8898 | 0.9994 | 877 | 0.3490 | 0.8834 |
|
56 |
+
| 0.8457 | 2.0 | 1755 | 0.2191 | 0.9224 |
|
57 |
+
| 0.7238 | 2.9994 | 2632 | 0.2113 | 0.9263 |
|
58 |
+
| 0.6685 | 4.0 | 3510 | 0.1838 | 0.9348 |
|
59 |
+
| 0.6236 | 4.9994 | 4387 | 0.2217 | 0.9205 |
|
60 |
+
| 0.6011 | 6.0 | 5265 | 0.1732 | 0.9386 |
|
61 |
+
| 0.6129 | 6.9994 | 6142 | 0.1582 | 0.9419 |
|
62 |
+
| 0.5606 | 8.0 | 7020 | 0.1478 | 0.9465 |
|
63 |
+
| 0.5136 | 8.9994 | 7897 | 0.1488 | 0.9458 |
|
64 |
+
| 0.4659 | 9.9943 | 8770 | 0.1417 | 0.9489 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.44.2
|
70 |
+
- Pytorch 2.4.0+cu121
|
71 |
+
- Datasets 2.21.0
|
72 |
+
- Tokenizers 0.19.1
|