TangJicheng
chore: init
7671dfd
"""
Copyright (c) 2019-present NAVER Corp.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch.nn as nn
# from modules.feature_extraction import ResNet_FeatureExtractor
class ResNet_FeatureExtractor(nn.Module):
"""FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf)"""
def __init__(self, input_channel, output_channel=512):
super(ResNet_FeatureExtractor, self).__init__()
self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3])
def forward(self, input):
return self.ConvNet(input)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = self._conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = self._conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def _conv3x3(self, in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, input_channel, output_channel, block, layers):
super(ResNet, self).__init__()
self.output_channel_block = [
int(output_channel / 4),
int(output_channel / 2),
output_channel,
output_channel,
]
self.inplanes = int(output_channel / 8)
self.conv0_1 = nn.Conv2d(
input_channel,
int(output_channel / 16),
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
self.conv0_2 = nn.Conv2d(
int(output_channel / 16),
self.inplanes,
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn0_2 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
self.conv1 = nn.Conv2d(
self.output_channel_block[0],
self.output_channel_block[0],
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.layer2 = self._make_layer(
block, self.output_channel_block[1], layers[1], stride=1
)
self.conv2 = nn.Conv2d(
self.output_channel_block[1],
self.output_channel_block[1],
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
self.layer3 = self._make_layer(
block, self.output_channel_block[2], layers[2], stride=1
)
self.conv3 = nn.Conv2d(
self.output_channel_block[2],
self.output_channel_block[2],
kernel_size=3,
stride=1,
padding=1,
bias=False,
)
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
self.layer4 = self._make_layer(
block, self.output_channel_block[3], layers[3], stride=1
)
self.conv4_1 = nn.Conv2d(
self.output_channel_block[3],
self.output_channel_block[3],
kernel_size=2,
stride=(2, 1),
padding=(0, 1),
bias=False,
)
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
self.conv4_2 = nn.Conv2d(
self.output_channel_block[3],
self.output_channel_block[3],
kernel_size=2,
stride=1,
padding=0,
bias=False,
)
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv0_1(x)
x = self.bn0_1(x)
x = self.relu(x)
x = self.conv0_2(x)
x = self.bn0_2(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer2(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.maxpool3(x)
x = self.layer3(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.layer4(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu(x)
return x
class STRModel(nn.Module):
def __init__(self, input_channels, output_channels, num_classes):
super(STRModel, self).__init__()
self.FeatureExtraction = ResNet_FeatureExtractor(
input_channels, output_channels
)
self.FeatureExtraction_output = output_channels # int(imgH/16-1) * 512
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d(
(self.FeatureExtraction_output, 1)
) # Transform final (imgH/16-1) -> 1
self.SequenceModeling_output = self.FeatureExtraction_output
self.Prediction = nn.Linear(self.SequenceModeling_output, num_classes)
def forward(self, input):
"""Feature extraction stage"""
visual_feature = self.FeatureExtraction(input)
visual_feature = self.AdaptiveAvgPool(
visual_feature.permute(0, 3, 1, 2)
) # [b, c, h, w] -> [b, w, c, h]
visual_feature = visual_feature.squeeze(3)
""" Prediction stage """
prediction = self.Prediction(visual_feature.contiguous())
return prediction