import torch from utils.model import STRModel # Create PyTorch Model Object model = STRModel(input_channels=1, output_channels=512, num_classes=37) # Load model weights from external file state = torch.load("None-ResNet-None-CTC.pth", map_location=torch.device('cpu')) state = {key.replace("module.", ""): value for key, value in state.items()} model.load_state_dict(state) # Create ONNX file by tracing model trace_input = torch.randn(1, 1, 32, 100) torch.onnx.export(model, trace_input, "str.onnx", verbose=True)