File size: 2,867 Bytes
1d92d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-US
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: PolyAI/minds14
      type: PolyAI/minds14
      config: en-US
      split: train[450:]
      args: en-US
    metrics:
    - name: Wer
      type: wer
      value: 0.3435655253837072
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tiny-en-US

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6286
- Wer Ortho: 0.3430
- Wer: 0.3436

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 10
- training_steps: 225

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 3.2798        | 0.25  | 14   | 0.9783          | 0.7218    | 0.6889 |
| 0.6283        | 0.5   | 28   | 0.5667          | 0.4479    | 0.4427 |
| 0.5574        | 0.75  | 42   | 0.5307          | 0.4812    | 0.4858 |
| 0.501         | 1.0   | 56   | 0.5130          | 0.3800    | 0.3813 |
| 0.2296        | 1.25  | 70   | 0.5057          | 0.3479    | 0.3436 |
| 0.2296        | 1.5   | 84   | 0.5515          | 0.3572    | 0.3512 |
| 0.2207        | 1.75  | 98   | 0.5356          | 0.3578    | 0.3530 |
| 0.1928        | 2.0   | 112  | 0.5288          | 0.3226    | 0.3200 |
| 0.0795        | 2.25  | 126  | 0.5532          | 0.3257    | 0.3259 |
| 0.0651        | 2.5   | 140  | 0.5833          | 0.3504    | 0.3512 |
| 0.0719        | 2.75  | 154  | 0.5931          | 0.3467    | 0.3501 |
| 0.0722        | 3.0   | 168  | 0.5994          | 0.3498    | 0.3477 |
| 0.0231        | 3.25  | 182  | 0.6030          | 0.3270    | 0.3264 |
| 0.0433        | 3.5   | 196  | 0.6059          | 0.3214    | 0.3200 |
| 0.0663        | 3.75  | 210  | 0.6262          | 0.3646    | 0.3648 |
| 0.0396        | 4.0   | 224  | 0.6286          | 0.3430    | 0.3436 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3