taqwa92 commited on
Commit
594680f
1 Parent(s): d1fbf0d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ar
4
+ license: apache-2.0
5
+ tags:
6
+ - hf-asr-leaderboard
7
+ - generated_from_trainer
8
+ datasets:
9
+ - taqwa92/tm_data
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small Arabic- Taqwa
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: tm_data
20
+ type: taqwa92/tm_data
21
+ config: default
22
+ split: test[:5%]
23
+ args: 'config: ar, split: test'
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 46.42559109874826
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # Whisper Small Arabic- Taqwa
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the tm_data dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.5306
38
+ - Wer: 46.4256
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 1e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 500
64
+ - training_steps: 500
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
71
+ | 0.2375 | 4.85 | 500 | 0.5306 | 46.4256 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.27.0.dev0
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.9.0
79
+ - Tokenizers 0.13.2