--- license: bigcode-openrail-m library_name: peft tags: - generated_from_trainer base_model: bigcode/tiny_starcoder_py model-index: - name: peft-lora-starcoder-chat-asst-A100-40GB-colab results: [] --- # peft-lora-starcoder-chat-asst-A100-40GB-colab This model is a fine-tuned version of [bigcode/tiny_starcoder_py](https://huggingface.co/bigcode/tiny_starcoder_py) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.649 | 0.67 | 100 | 2.2075 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0