kexinhuang commited on
Commit
833e196
1 Parent(s): ae3bf28

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ metrics:
5
+ - accuracy
6
+ - AUC ROC
7
+ - precision
8
+ - recall
9
+ pipeline_tag: molecule-property-prediction
10
+ tags:
11
+ - biology
12
+ - chemistry
13
+ library_name: tdc
14
+ license: bsd-2-clause
15
+ ---
16
+
17
+ ## Dataset description
18
+
19
+ As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protection layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in development of drugs for central nervous system.
20
+
21
+ ## Task description
22
+ Binary classification. Given a drug SMILES string, predict the activity of BBB.
23
+
24
+ ## Dataset statistics
25
+ Total: 1,975; Train_val: 1,580; Test: 395
26
+
27
+ ## Dataset split:
28
+ Random split on 70% training, 10% validation, and 20% testing
29
+ To load the dataset in TDC, type
30
+ ```python
31
+ from tdc.single_pred import ADME
32
+ data = ADME(name = 'BBB_Martins')
33
+ ```
34
+
35
+ ## Model description
36
+ AttentiveFP is a Graph Attention Network-based molecular representation learning method. Model is tuned with 100 runs using Ax platform.
37
+ To load the pre-trained model, type
38
+
39
+ ```python
40
+ from tdc import tdc_hf_interface
41
+ tdc_hf = tdc_hf_interface("BBB_Martins-AttentiveFP")
42
+ # load deeppurpose model from this repo
43
+ dp_model = tdc_hf_herg.load_deeppurpose('./data')
44
+ tdc_hf.predict_deeppurpose(dp_model, [YOUR SMILES STRING'])
45
+ ```
46
+
47
+ ## References:
48
+ [1] Martins, Ines Filipa, et al. “A Bayesian approach to in silico blood-brain barrier penetration modeling.” Journal of chemical information and modeling 52.6 (2012): 1686-1697.