Automatic Speech Recognition
TensorBoard
Safetensors
Welsh
wav2vec2
Generated from Trainer
DewiBrynJones commited on
Commit
7db016f
1 Parent(s): e9ae8d5

Model save

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-large-xlsr-53
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: wav2vec2-xlsr-53-ft-btb-cv-cy-cand
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # wav2vec2-xlsr-53-ft-btb-cv-cy-cand
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: inf
21
+ - Wer: 0.3598
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0003
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 64
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 800
47
+ - training_steps: 8000
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:------:|:----:|:---------------:|:------:|
54
+ | 4.6973 | 0.0714 | 500 | inf | 1.0 |
55
+ | 1.448 | 0.1428 | 1000 | inf | 0.7574 |
56
+ | 1.053 | 0.2142 | 1500 | inf | 0.6584 |
57
+ | 0.9304 | 0.2856 | 2000 | inf | 0.5963 |
58
+ | 0.8755 | 0.3569 | 2500 | inf | 0.5946 |
59
+ | 0.8238 | 0.4283 | 3000 | inf | 0.5392 |
60
+ | 0.7819 | 0.4997 | 3500 | inf | 0.4967 |
61
+ | 0.729 | 0.5711 | 4000 | inf | 0.4834 |
62
+ | 0.6923 | 0.6425 | 4500 | inf | 0.4564 |
63
+ | 0.7052 | 0.7139 | 5000 | inf | 0.4346 |
64
+ | 0.6675 | 0.7853 | 5500 | inf | 0.4163 |
65
+ | 0.6217 | 0.8567 | 6000 | inf | 0.3962 |
66
+ | 0.5954 | 0.9280 | 6500 | inf | 0.3883 |
67
+ | 0.5687 | 0.9994 | 7000 | inf | 0.3746 |
68
+ | 0.477 | 1.0708 | 7500 | inf | 0.3647 |
69
+ | 0.4804 | 1.1422 | 8000 | inf | 0.3598 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.44.0
75
+ - Pytorch 2.4.0+cu121
76
+ - Datasets 2.21.0
77
+ - Tokenizers 0.19.1