--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 metrics: - wer datasets: - techiaith/commonvoice_16_1_en_cy - techiaith/banc-trawsgrifiadau-bangor language: - cy - en pipeline_tag: automatic-speech-recognition --- # wav2vec2-xlsr-53-ft-cy-en-withlm This model is a version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) that has been fined-tuned with a custom bilingual datasets derived from the Welsh and English data releases of Mozilla Foundation's Commonvoice project. See : [techiaith/commonvoice_16_1_en_cy](https://huggingface.co/datasets/techiaith/commonvoice_16_1_en_cy). In addition, this model also includes a single KenLM n-gram model trained with balanced collections of Welsh and English texts from [OSCAR](https://huggingface.co/datasets/oscar) This avoids the need for any language detection for determining whether to use a Welsh or English n-gram models during CTC decoding. ## Usage The `wav2vec2-xlsr-53-ft-cy-en-withlm` model can be used directly as follows: ```python import torch import torchaudio import librosa from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM processor = Wav2Vec2ProcessorWithLM.from_pretrained("techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm") model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm") audio, rate = librosa.load(, sr=16000) inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits print("Prediction: ", processor.batch_decode(tlogits.numpy(), beam_width=10).text[0].strip()) ``` Usage with a pipeline is even simpler... ``` from transformers import pipeline transcriber = pipeline("automatic-speech-recognition", model="techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm") def transcribe(audio): return transcriber(audio)["text"] transcribe() ```