--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer - whisper datasets: - techiaith/commonvoice_18_0_cy metrics: - wer model-index: - name: whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: DewiBrynJones/commonvoice_18_0_cy default type: DewiBrynJones/commonvoice_18_0_cy args: default metrics: - name: Wer type: wer value: 0.185 language: - cy pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-ft-cv-cy This model is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) fine-tuned with the `train_all` and `other_with_excluded` custom splits from [techiaith/commonvoice_18_0_cy](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy) It achieves the following results on the Common Voice for Welsh release 18's standard test set: - WER: 18.50 - CER: 5.32 N.B. this model performs considerably worse on English language speech, but better on Welsh than a [bilingual model](https://huggingface.co/techiaith/whisper-large-v3-ft-cv-cy-en) ## Usage ```python from transformers import pipeline transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-cv-cy") result = transcriber() print (result) ``` `{'text': 'Mae hen wlad fy nhadau yn annwyl i mi.'}`