--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: miner_id_f440f781-9df5-4143-92fd-390f41cfa5f5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: microsoft/Phi-3-mini-128k-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false chat_template: chatml datasets: - path: /workspace/input_data/1f4f410266a6e550_train_data.json format: custom type: system_prompt: '' system_format: '{system}' field_instruction: topic field_input: text field_output: target no_input_format: '{instruction}' format: '{instruction} {input}' ds_type: json data_files: - 1f4f410266a6e550_train_data.json dataset_prepared_path: null val_set_size: 0.05 output_dir: miner_id_f440f781-9df5-4143-92fd-390f41cfa5f5 sequence_len: 4056 sample_packing: false pad_to_sequence_len: true trust_remote_code: true adapter: lora lora_model_dir: null lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: null gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: null tf32: false gradient_checkpointing: false early_stopping_patience: null resume_from_checkpoint: null local_rank: null logging_steps: 1 xformers_attention: null flash_attention: true s2_attention: null wandb_project: Gradients-On-Demand wandb_entity: prongsie wandb_mode: online wandb_run: your_name wandb_runid: default hub_model_id: tensor24/miner_id_f440f781-9df5-4143-92fd-390f41cfa5f5 hub_repo: tensor24/miner_id_f440f781-9df5-4143-92fd-390f41cfa5f5 hub_strategy: checkpoint hub_token: null saves_per_epoch: 4 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: null eval_max_new_tokens: 128 max_steps: 10 debug: null deepspeed: null weight_decay: 0.0 fsdp: null fsdp_config: null tokenizer_config: microsoft/Phi-3-mini-128k-instruct mlflow_experiment_name: /tmp/1f4f410266a6e550_train_data.json ```

# miner_id_f440f781-9df5-4143-92fd-390f41cfa5f5 This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 37.0272 | 0.0007 | 1 | 9.6565 | | 39.1861 | 0.0022 | 3 | 9.5608 | | 38.8873 | 0.0044 | 6 | 8.5297 | | 22.1419 | 0.0066 | 9 | 4.6310 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1