---
license: apache-2.0
language:
- en
pipeline_tag: image-text-to-text
tags:
- multimodal
- TensorBlock
- GGUF
library_name: transformers
base_model: Qwen/Qwen2-VL-2B
---
## Qwen/Qwen2-VL-2B - GGUF
This repo contains GGUF format model files for [Qwen/Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4329](https://github.com/ggerganov/llama.cpp/commit/89d604f2c87af9db657d8a27a1528bc4b7579c29).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Qwen2-VL-2B-Q2_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q2_K.gguf) | Q2_K | 0.676 GB | smallest, significant quality loss - not recommended for most purposes |
| [Qwen2-VL-2B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_S.gguf) | Q3_K_S | 0.761 GB | very small, high quality loss |
| [Qwen2-VL-2B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_M.gguf) | Q3_K_M | 0.824 GB | very small, high quality loss |
| [Qwen2-VL-2B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q3_K_L.gguf) | Q3_K_L | 0.880 GB | small, substantial quality loss |
| [Qwen2-VL-2B-Q4_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_0.gguf) | Q4_0 | 0.935 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Qwen2-VL-2B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_K_S.gguf) | Q4_K_S | 0.940 GB | small, greater quality loss |
| [Qwen2-VL-2B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q4_K_M.gguf) | Q4_K_M | 0.986 GB | medium, balanced quality - recommended |
| [Qwen2-VL-2B-Q5_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_0.gguf) | Q5_0 | 1.099 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Qwen2-VL-2B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_K_S.gguf) | Q5_K_S | 1.099 GB | large, low quality loss - recommended |
| [Qwen2-VL-2B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q5_K_M.gguf) | Q5_K_M | 1.125 GB | large, very low quality loss - recommended |
| [Qwen2-VL-2B-Q6_K.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q6_K.gguf) | Q6_K | 1.273 GB | very large, extremely low quality loss |
| [Qwen2-VL-2B-Q8_0.gguf](https://huggingface.co/tensorblock/Qwen2-VL-2B-GGUF/blob/main/Qwen2-VL-2B-Q8_0.gguf) | Q8_0 | 1.647 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Qwen2-VL-2B-GGUF --include "Qwen2-VL-2B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Qwen2-VL-2B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```