File size: 6,895 Bytes
8b71168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
language:
- en
license: llama3
library_name: transformers
tags:
- mathematics
- TensorBlock
- GGUF
datasets:
- hkust-nlp/dart-math-hard
metrics:
- accuracy
pipeline_tag: text-generation
base_model: hkust-nlp/dart-math-llama3-8b-prop2diff
model-index:
- name: dart-math-llama3-8b-prop2diff
results:
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: MATH
type: hendrycks/competition_math
split: test
metrics:
- type: accuracy
value: 46.6
name: Pass@1 (0-shot CoT)
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: GSM8K
type: openai/gsm8k
config: main
split: test
metrics:
- type: accuracy
value: 81.1
name: Pass@1 (0-shot CoT)
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: CollegeMath
type: college-math
metrics:
- type: accuracy
value: 28.8
name: Pass@1 (0-shot CoT)
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: DeepMind-Mathematics
type: deepmind-mathematics
metrics:
- type: accuracy
value: 48.0
name: Pass@1 (0-shot CoT)
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: OlympiadBench-OE_TO_maths_en_COMP
type: Hothan/OlympiadBench
config: OE_TO_maths_en_COMP
split: train
metrics:
- type: accuracy
value: 14.5
name: Pass@1 (0-shot CoT)
- task:
type: text-generation
name: Mathematical Problem-Solving
dataset:
name: TheoremQA
type: TIGER-Lab/TheoremQA
split: test
metrics:
- type: accuracy
value: 19.4
name: Pass@1 (0-shot CoT)
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## hkust-nlp/dart-math-llama3-8b-prop2diff - GGUF
This repo contains GGUF format model files for [hkust-nlp/dart-math-llama3-8b-prop2diff](https://huggingface.co/hkust-nlp/dart-math-llama3-8b-prop2diff).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [dart-math-llama3-8b-prop2diff-Q2_K.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes |
| [dart-math-llama3-8b-prop2diff-Q3_K_S.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss |
| [dart-math-llama3-8b-prop2diff-Q3_K_M.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss |
| [dart-math-llama3-8b-prop2diff-Q3_K_L.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss |
| [dart-math-llama3-8b-prop2diff-Q4_0.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q4_0.gguf) | Q4_0 | 4.662 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [dart-math-llama3-8b-prop2diff-Q4_K_S.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss |
| [dart-math-llama3-8b-prop2diff-Q4_K_M.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended |
| [dart-math-llama3-8b-prop2diff-Q5_0.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q5_0.gguf) | Q5_0 | 5.600 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [dart-math-llama3-8b-prop2diff-Q5_K_S.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q5_K_S.gguf) | Q5_K_S | 5.600 GB | large, low quality loss - recommended |
| [dart-math-llama3-8b-prop2diff-Q5_K_M.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended |
| [dart-math-llama3-8b-prop2diff-Q6_K.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss |
| [dart-math-llama3-8b-prop2diff-Q8_0.gguf](https://huggingface.co/tensorblock/dart-math-llama3-8b-prop2diff-GGUF/blob/main/dart-math-llama3-8b-prop2diff-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/dart-math-llama3-8b-prop2diff-GGUF --include "dart-math-llama3-8b-prop2diff-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/dart-math-llama3-8b-prop2diff-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|