File size: 6,610 Bytes
ca88fc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- TensorBlock
- GGUF
base_model: ibm-granite/granite-3.0-8b-base
model-index:
- name: granite-3.0-8b-base
results:
- task:
type: text-generation
dataset:
name: MMLU
type: human-exams
metrics:
- type: pass@1
value: 65.54
name: pass@1
- type: pass@1
value: 33.27
name: pass@1
- type: pass@1
value: 34.45
name: pass@1
- task:
type: text-generation
dataset:
name: WinoGrande
type: commonsense
metrics:
- type: pass@1
value: 80.9
name: pass@1
- type: pass@1
value: 46.8
name: pass@1
- type: pass@1
value: 67.8
name: pass@1
- type: pass@1
value: 82.32
name: pass@1
- type: pass@1
value: 83.61
name: pass@1
- type: pass@1
value: 52.89
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 86.97
name: pass@1
- type: pass@1
value: 32.92
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 63.4
name: pass@1
- type: pass@1
value: 32.13
name: pass@1
- type: pass@1
value: 49.31
name: pass@1
- type: pass@1
value: 41.08
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEval
type: code
metrics:
- type: pass@1
value: 52.44
name: pass@1
- type: pass@1
value: 41.4
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 64.06
name: pass@1
- type: pass@1
value: 29.28
name: pass@1
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## ibm-granite/granite-3.0-8b-base - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-3.0-8b-base](https://huggingface.co/ibm-granite/granite-3.0-8b-base).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-3.0-8b-base-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q2_K.gguf) | Q2_K | 3.104 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-3.0-8b-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_S.gguf) | Q3_K_S | 3.592 GB | very small, high quality loss |
| [granite-3.0-8b-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_M.gguf) | Q3_K_M | 3.997 GB | very small, high quality loss |
| [granite-3.0-8b-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_L.gguf) | Q3_K_L | 4.349 GB | small, substantial quality loss |
| [granite-3.0-8b-base-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_0.gguf) | Q4_0 | 4.651 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-3.0-8b-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_K_S.gguf) | Q4_K_S | 4.686 GB | small, greater quality loss |
| [granite-3.0-8b-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_K_M.gguf) | Q4_K_M | 4.943 GB | medium, balanced quality - recommended |
| [granite-3.0-8b-base-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_0.gguf) | Q5_0 | 5.647 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-3.0-8b-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_K_S.gguf) | Q5_K_S | 5.647 GB | large, low quality loss - recommended |
| [granite-3.0-8b-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_K_M.gguf) | Q5_K_M | 5.797 GB | large, very low quality loss - recommended |
| [granite-3.0-8b-base-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q6_K.gguf) | Q6_K | 6.705 GB | very large, extremely low quality loss |
| [granite-3.0-8b-base-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q8_0.gguf) | Q8_0 | 8.684 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-3.0-8b-base-GGUF --include "granite-3.0-8b-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-3.0-8b-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|