--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.0 - TensorBlock - GGUF base_model: ibm-granite/granite-3.0-8b-base model-index: - name: granite-3.0-8b-base results: - task: type: text-generation dataset: name: MMLU type: human-exams metrics: - type: pass@1 value: 65.54 name: pass@1 - type: pass@1 value: 33.27 name: pass@1 - type: pass@1 value: 34.45 name: pass@1 - task: type: text-generation dataset: name: WinoGrande type: commonsense metrics: - type: pass@1 value: 80.9 name: pass@1 - type: pass@1 value: 46.8 name: pass@1 - type: pass@1 value: 67.8 name: pass@1 - type: pass@1 value: 82.32 name: pass@1 - type: pass@1 value: 83.61 name: pass@1 - type: pass@1 value: 52.89 name: pass@1 - task: type: text-generation dataset: name: BoolQ type: reading-comprehension metrics: - type: pass@1 value: 86.97 name: pass@1 - type: pass@1 value: 32.92 name: pass@1 - task: type: text-generation dataset: name: ARC-C type: reasoning metrics: - type: pass@1 value: 63.4 name: pass@1 - type: pass@1 value: 32.13 name: pass@1 - type: pass@1 value: 49.31 name: pass@1 - type: pass@1 value: 41.08 name: pass@1 - task: type: text-generation dataset: name: HumanEval type: code metrics: - type: pass@1 value: 52.44 name: pass@1 - type: pass@1 value: 41.4 name: pass@1 - task: type: text-generation dataset: name: GSM8K type: math metrics: - type: pass@1 value: 64.06 name: pass@1 - type: pass@1 value: 29.28 name: pass@1 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## ibm-granite/granite-3.0-8b-base - GGUF This repo contains GGUF format model files for [ibm-granite/granite-3.0-8b-base](https://huggingface.co/ibm-granite/granite-3.0-8b-base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-3.0-8b-base-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q2_K.gguf) | Q2_K | 3.104 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-3.0-8b-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_S.gguf) | Q3_K_S | 3.592 GB | very small, high quality loss | | [granite-3.0-8b-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_M.gguf) | Q3_K_M | 3.997 GB | very small, high quality loss | | [granite-3.0-8b-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q3_K_L.gguf) | Q3_K_L | 4.349 GB | small, substantial quality loss | | [granite-3.0-8b-base-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_0.gguf) | Q4_0 | 4.651 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-3.0-8b-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_K_S.gguf) | Q4_K_S | 4.686 GB | small, greater quality loss | | [granite-3.0-8b-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q4_K_M.gguf) | Q4_K_M | 4.943 GB | medium, balanced quality - recommended | | [granite-3.0-8b-base-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_0.gguf) | Q5_0 | 5.647 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-3.0-8b-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_K_S.gguf) | Q5_K_S | 5.647 GB | large, low quality loss - recommended | | [granite-3.0-8b-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q5_K_M.gguf) | Q5_K_M | 5.797 GB | large, very low quality loss - recommended | | [granite-3.0-8b-base-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q6_K.gguf) | Q6_K | 6.705 GB | very large, extremely low quality loss | | [granite-3.0-8b-base-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-8b-base-GGUF/blob/main/granite-3.0-8b-base-Q8_0.gguf) | Q8_0 | 8.684 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-3.0-8b-base-GGUF --include "granite-3.0-8b-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-3.0-8b-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```