File size: 3,854 Bytes
93aaac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# This is the hyperparameter configuration file for FastSpeech2 v2.
# the different of v2 and v1 is that v2 apply linformer technique.
# Please make sure this is adjusted for the Baker dataset. If you want to
# apply to the other dataset, you might need to carefully change some parameters.
# This configuration performs 200k iters but a best checkpoint is around 150k iters.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
hop_size: 256 # Hop size.
format: "npy"
###########################################################
# NETWORK ARCHITECTURE SETTING #
###########################################################
model_type: "fastspeech2"
fastspeech2_params:
dataset: baker
n_speakers: 1
encoder_hidden_size: 256
encoder_num_hidden_layers: 3
encoder_num_attention_heads: 2
encoder_attention_head_size: 16 # in v1, = 384//2
encoder_intermediate_size: 1024
encoder_intermediate_kernel_size: 3
encoder_hidden_act: "mish"
decoder_hidden_size: 256
decoder_num_hidden_layers: 3
decoder_num_attention_heads: 2
decoder_attention_head_size: 16 # in v1, = 384//2
decoder_intermediate_size: 1024
decoder_intermediate_kernel_size: 3
decoder_hidden_act: "mish"
variant_prediction_num_conv_layers: 2
variant_predictor_filter: 256
variant_predictor_kernel_size: 3
variant_predictor_dropout_rate: 0.5
num_mels: 80
hidden_dropout_prob: 0.2
attention_probs_dropout_prob: 0.1
max_position_embeddings: 2048
initializer_range: 0.02
output_attentions: False
output_hidden_states: False
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
mel_length_threshold: 32 # remove all targets has mel_length <= 32
is_shuffle: true # shuffle dataset after each epoch.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
optimizer_params:
initial_learning_rate: 0.001
end_learning_rate: 0.00005
decay_steps: 150000 # < train_max_steps is recommend.
warmup_proportion: 0.02
weight_decay: 0.001
gradient_accumulation_steps: 1
var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' )
# must separate by |. if var_train_expr is null then we
# training all variable
###########################################################
# INTERVAL SETTING #
###########################################################
train_max_steps: 200000 # Number of training steps.
save_interval_steps: 5000 # Interval steps to save checkpoint.
eval_interval_steps: 500 # Interval steps to evaluate the network.
log_interval_steps: 200 # Interval steps to record the training log.
delay_f0_energy_steps: 3 # 2 steps use LR outputs only then 1 steps LR + F0 + Energy.
###########################################################
# OTHER SETTING #
###########################################################
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
|