dathudeptrai
commited on
Commit
•
52621ab
1
Parent(s):
5a7ff82
🦋 Update README
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- tensorflowtts
|
4 |
+
- audio
|
5 |
+
- text-to-speech
|
6 |
+
- mel-to-wav
|
7 |
+
language: en
|
8 |
+
license: apache-2.0
|
9 |
+
datasets:
|
10 |
+
- ljspeech
|
11 |
+
widget:
|
12 |
+
- text: "Hello, how are you doing?"
|
13 |
+
---
|
14 |
+
|
15 |
+
# Multi-band MelGAN trained on LJSpeech (En)
|
16 |
+
This repository provides a pretrained [Multi-band MelGAN](https://arxiv.org/abs/2005.05106) trained on LJSpeech dataset (Eng). For a detail of the model, we encourage you to read more about
|
17 |
+
[TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS).
|
18 |
+
|
19 |
+
|
20 |
+
## Install TensorFlowTTS
|
21 |
+
First of all, please install TensorFlowTTS with the following command:
|
22 |
+
```
|
23 |
+
pip install TensorFlowTTS
|
24 |
+
```
|
25 |
+
|
26 |
+
### Converting your Text to Wav Spectrogram
|
27 |
+
```python
|
28 |
+
import soundfile as sf
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
import tensorflow as tf
|
32 |
+
|
33 |
+
from tensorflow_tts.inference import AutoProcessor
|
34 |
+
from tensorflow_tts.inference import TFAutoModel
|
35 |
+
|
36 |
+
processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
|
37 |
+
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en")
|
38 |
+
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en ")
|
39 |
+
|
40 |
+
text = "This is a demo to show how to use our model to generate mel spectrogram from raw text."
|
41 |
+
|
42 |
+
input_ids = processor.text_to_sequence(text)
|
43 |
+
|
44 |
+
# tacotron2 inference (text-to-mel)
|
45 |
+
decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference(
|
46 |
+
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
47 |
+
input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32),
|
48 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
49 |
+
)
|
50 |
+
|
51 |
+
# melgan inference (mel-to-wav)
|
52 |
+
audio = mb_melgan.inference(mel_outputs)[0, :, 0]
|
53 |
+
|
54 |
+
# save to file
|
55 |
+
sf.write('./audio.wav', audio, 22050, "PCM_16")
|
56 |
+
```
|
57 |
+
|
58 |
+
#### Referencing Multi-band MelGAN
|
59 |
+
```
|
60 |
+
@misc{yang2020multiband,
|
61 |
+
title={Multi-band MelGAN: Faster Waveform Generation for High-Quality Text-to-Speech},
|
62 |
+
author={Geng Yang and Shan Yang and Kai Liu and Peng Fang and Wei Chen and Lei Xie},
|
63 |
+
year={2020},
|
64 |
+
eprint={2005.05106},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.SD}
|
67 |
+
}
|
68 |
+
```
|
69 |
+
|
70 |
+
#### Referencing TensorFlowTTS
|
71 |
+
```
|
72 |
+
@misc{TFTTS,
|
73 |
+
author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata,
|
74 |
+
Trinh Le and Yunchao He},
|
75 |
+
title = {TensorflowTTS},
|
76 |
+
year = {2020},
|
77 |
+
publisher = {GitHub},
|
78 |
+
journal = {GitHub repository},
|
79 |
+
howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}},
|
80 |
+
}
|
81 |
+
```
|