---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Total company-operated stores | 711 | | 655
sentences:
- What type of financial documents are included in Part IV, Item 15(a)(1) of the
Annual Report on Form 10-K?
- What is the total number of company-operated stores as of January 28, 2024?
- When does the 364-day facility entered into in August 2023 expire, and what is
its total amount?
- source_sentence: GM empowers employees to 'Speak Up for Safety' through the Employee
Safety Concern Process which makes it easier for employees to report potential
safety issues or suggest improvements without fear of retaliation and ensures
their safety every day.
sentences:
- What item number is associated with financial statements and supplementary data
in documents?
- How does GM promote safety and well-being among its employees?
- What are the main features included in the Skills for Jobs initiative launched
by Microsoft?
- source_sentence: Under the 2020 Plan, the exercise price of options granted is generally
at least equal to the fair market value of the Company’s Class A common stock
on the date of grant.
sentences:
- How is the exercise price for incentive stock options determined under Palantir
Technologies Inc.’s 2020 Equity Incentive Plan?
- What were the dividend amounts declared by AT&T for its preferred and common shares
in December 2022 and December 2023?
- What does Item 8 in a document usually represent?
- source_sentence: On December 22, 2022, the parties entered into a settlement agreement
to resolve the lawsuit, which provides for a payment of $725 million by us. The
settlement was approved by the court on October 10, 2023, and the payment was
made in November 2023.
sentences:
- What is the purpose of GM's collaboration efforts at their Global Technical Center
in Warren, Michigan?
- How does the acquisition method affect the financial statements after a business
acquisition?
- What was the outcome of the 2019 consumer class action regarding the company's
user data practices?
- source_sentence: Item 8, titled 'Financial Statements and Supplementary Data,' is
followed by an index to these sections.
sentences:
- What section follows Item 8 in the document?
- What is the total assets and shareholders' equity of Chubb Limited as of December
31, 2023?
- How does AT&T emphasize diversity in its hiring practices?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7385714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8642857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8942857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9342857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7385714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28809523809523807
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17885714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09342857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7385714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8642857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8942857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9342857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8387370920568787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8078395691609976
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8102903092098301
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7414285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8557142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8942857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9328571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7414285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2852380952380953
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17885714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09328571428571426
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7414285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8557142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8942857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9328571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8380676321786823
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8075895691609978
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8101143502932845
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7357142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.85
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8814285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7357142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2833333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17628571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7357142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.85
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8814285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8286016704428653
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7992942176870748
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8028214002001232
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.84
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8153680997284491
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7840521541950115
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7875962124214356
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8085714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8371428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8857142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26952380952380955
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1674285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08857142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8085714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8371428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8857142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7840147713456539
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7513815192743762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.755682487136274
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-base-financial-matryoshka")
# Run inference
sentences = [
"Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections.",
'What section follows Item 8 in the document?',
"What is the total assets and shareholders' equity of Chubb Limited as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7386 |
| cosine_accuracy@3 | 0.8643 |
| cosine_accuracy@5 | 0.8943 |
| cosine_accuracy@10 | 0.9343 |
| cosine_precision@1 | 0.7386 |
| cosine_precision@3 | 0.2881 |
| cosine_precision@5 | 0.1789 |
| cosine_precision@10 | 0.0934 |
| cosine_recall@1 | 0.7386 |
| cosine_recall@3 | 0.8643 |
| cosine_recall@5 | 0.8943 |
| cosine_recall@10 | 0.9343 |
| cosine_ndcg@10 | 0.8387 |
| cosine_mrr@10 | 0.8078 |
| **cosine_map@100** | **0.8103** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7414 |
| cosine_accuracy@3 | 0.8557 |
| cosine_accuracy@5 | 0.8943 |
| cosine_accuracy@10 | 0.9329 |
| cosine_precision@1 | 0.7414 |
| cosine_precision@3 | 0.2852 |
| cosine_precision@5 | 0.1789 |
| cosine_precision@10 | 0.0933 |
| cosine_recall@1 | 0.7414 |
| cosine_recall@3 | 0.8557 |
| cosine_recall@5 | 0.8943 |
| cosine_recall@10 | 0.9329 |
| cosine_ndcg@10 | 0.8381 |
| cosine_mrr@10 | 0.8076 |
| **cosine_map@100** | **0.8101** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7357 |
| cosine_accuracy@3 | 0.85 |
| cosine_accuracy@5 | 0.8814 |
| cosine_accuracy@10 | 0.92 |
| cosine_precision@1 | 0.7357 |
| cosine_precision@3 | 0.2833 |
| cosine_precision@5 | 0.1763 |
| cosine_precision@10 | 0.092 |
| cosine_recall@1 | 0.7357 |
| cosine_recall@3 | 0.85 |
| cosine_recall@5 | 0.8814 |
| cosine_recall@10 | 0.92 |
| cosine_ndcg@10 | 0.8286 |
| cosine_mrr@10 | 0.7993 |
| **cosine_map@100** | **0.8028** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7143 |
| cosine_accuracy@3 | 0.84 |
| cosine_accuracy@5 | 0.87 |
| cosine_accuracy@10 | 0.9129 |
| cosine_precision@1 | 0.7143 |
| cosine_precision@3 | 0.28 |
| cosine_precision@5 | 0.174 |
| cosine_precision@10 | 0.0913 |
| cosine_recall@1 | 0.7143 |
| cosine_recall@3 | 0.84 |
| cosine_recall@5 | 0.87 |
| cosine_recall@10 | 0.9129 |
| cosine_ndcg@10 | 0.8154 |
| cosine_mrr@10 | 0.7841 |
| **cosine_map@100** | **0.7876** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6771 |
| cosine_accuracy@3 | 0.8086 |
| cosine_accuracy@5 | 0.8371 |
| cosine_accuracy@10 | 0.8857 |
| cosine_precision@1 | 0.6771 |
| cosine_precision@3 | 0.2695 |
| cosine_precision@5 | 0.1674 |
| cosine_precision@10 | 0.0886 |
| cosine_recall@1 | 0.6771 |
| cosine_recall@3 | 0.8086 |
| cosine_recall@5 | 0.8371 |
| cosine_recall@10 | 0.8857 |
| cosine_ndcg@10 | 0.784 |
| cosine_mrr@10 | 0.7514 |
| **cosine_map@100** | **0.7557** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
As of January 28, 2024, we held cash and cash equivalents of $2.2 billion.
| What was the total cash and cash equivalents held by the company as of January 28, 2024?
|
| Net cash used in financing activities amounted to $1,600 million in fiscal year 2023.
| What was the total net cash used in financing activities in fiscal year 2023?
|
| Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections.
| What section follows Item 8 in the document?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters