File size: 1,735 Bytes
503dcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361696a
 
503dcd1
361696a
 
 
503dcd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361696a
503dcd1
 
 
361696a
 
 
 
 
503dcd1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0011
- Rouge1: 99.8667
- Rouge2: 99.8
- Rougel: 99.8667
- Rougelsum: 99.8667
- Gen Len: 12.778

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.0034        | 1.0   | 2761 | 0.0013          | 99.8333 | 99.8   | 99.8333 | 99.8333   | 12.7787 |
| 0.0029        | 2.0   | 5522 | 0.0011          | 99.8667 | 99.8   | 99.8667 | 99.8667   | 12.778  |
| 0.0032        | 3.0   | 8283 | 0.0011          | 99.8667 | 99.8   | 99.8667 | 99.8667   | 12.778  |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3