--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-multilingual-bert results: [] --- # ner-multilingual-bert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Precision: 0.9998 - Recall: 0.9991 - F1: 0.9994 - Accuracy: 1.0000 ## Model description Trained to detect author and publish dates out of text beginnings ## Intended uses & limitations More information needed ## Training and evaluation data See [Dataset](https://huggingface.co/datasets/textminr/ner_tokenized) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0108 | 0.2 | 250 | 0.0039 | 0.9942 | 0.9818 | 0.9880 | 0.9992 | | 0.0022 | 0.4 | 500 | 0.0021 | 0.9863 | 0.9861 | 0.9862 | 0.9993 | | 0.0006 | 0.61 | 750 | 0.0007 | 0.9998 | 0.9975 | 0.9986 | 0.9999 | | 0.0004 | 0.81 | 1000 | 0.0002 | 0.9998 | 0.9991 | 0.9994 | 1.0000 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0